Ignaccolo Massimiliano, Latka Mirek, Jernajczyk Wojciech, Grigolini Paolo, West Bruce J
J Biol Phys. 2010 Mar;36(2):185-96. doi: 10.1007/s10867-009-9171-y. Epub 2009 Aug 11.
The scaling properties of human EEG have so far been analyzed predominantly in the framework of detrended fluctuation analysis (DFA). In particular, these studies suggested the existence of power-law correlations in EEG. In DFA, EEG time series are tacitly assumed to be made up of fluctuations, whose scaling behavior reflects neurophysiologically important information and polynomial trends. Even though these trends are physiologically irrelevant, they must be eliminated (detrended) to reliably estimate such measures as Hurst exponent or fractal dimension. Here, we employ the diffusion entropy method to study the scaling behavior of EEG. Unlike DFA, this method does not rely on the assumption of trends superposed on EEG fluctuations. We find that the growth of diffusion entropy of EEG increments of awake subjects with closed eyes is arrested only after approximately 0.5 s. We demonstrate that the salient features of diffusion entropy dynamics of EEG, such as the existence of short-term scaling, asymptotic saturation, and alpha wave modulation, may be faithfully reproduced using a dissipative, first-order, stochastic differential equation-an extension of the Langevin equation. The structure of such a model is utterly different from the "noise+trend" paradigm of DFA. Consequently, we argue that the existence of scaling properties for EEG dynamics is an open question that necessitates further studies.
迄今为止,人类脑电图(EEG)的标度特性主要是在去趋势波动分析(DFA)的框架内进行分析的。具体而言,这些研究表明脑电图中存在幂律相关性。在DFA中,脑电图时间序列被默认由波动组成,其标度行为反映了神经生理学上重要的信息以及多项式趋势。尽管这些趋势在生理上并不相关,但必须消除(去趋势)它们,以便可靠地估计诸如赫斯特指数或分形维数等指标。在此,我们采用扩散熵方法来研究脑电图的标度行为。与DFA不同,该方法不依赖于叠加在脑电图波动上的趋势假设。我们发现,闭眼清醒受试者脑电图增量的扩散熵增长仅在大约0.5秒后才停止。我们证明,脑电图扩散熵动力学的显著特征,如短期标度的存在、渐近饱和以及阿尔法波调制,可以使用一个耗散的一阶随机微分方程——朗之万方程的扩展——如实地再现。这种模型的结构与DFA的“噪声+趋势”范式完全不同。因此,我们认为脑电图动力学标度特性的存在是一个有待进一步研究的开放性问题。