Suppr超能文献

基于脑电图的精神疾病生物标志物的进展、挑战与前景:一项叙述性综述

Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review.

作者信息

Yun Seokho

机构信息

Department of Psychiatry, Yeungnam University College of Medicine, Daegu, Korea.

出版信息

J Yeungnam Med Sci. 2024 Oct;41(4):261-268. doi: 10.12701/jyms.2024.00668. Epub 2024 Sep 9.

Abstract

Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.

摘要

由于缺乏用于准确诊断和治疗的合适生物标志物,精神障碍会导致严重的痛苦和功能损害,从而造成社会和经济损失。生物标志物对于诊断、预测、治疗和监测各种疾病至关重要。然而,它们在精神病学领域的缺失与大脑的复杂结构以及缺乏直接监测方式有关。本综述探讨了脑电图(EEG)作为识别精神生物标志物的神经生理学工具的潜力。EEG以非侵入性方式测量大脑电生理活动,用于诊断抑郁症、双相情感障碍(BD)和精神分裂症等神经疾病,并识别精神生物标志物。尽管进行了广泛研究,但由于测量和分析方面的限制,基于EEG的生物标志物尚未在临床上得到应用。EEG研究已经揭示了抑郁症的频谱和复杂性测量、BD中的脑电波异常以及精神分裂症中的功率谱异常。然而,目前临床上尚无基于EEG的生物标志物用于精神障碍的治疗。EEG的优点包括实时数据采集、非侵入性、成本效益高和时间分辨率高。诸如空间分辨率低、易受干扰以及数据解释复杂等挑战限制了其临床应用。将EEG与其他神经成像技术、先进的信号处理和标准化方案相结合对于克服这些限制至关重要。人工智能可能会增强EEG分析和生物标志物发现,通过提供早期诊断、个性化治疗和改进疾病进展监测,有可能改变精神科护理。

相似文献

2
In search of biomarkers in psychiatry: EEG-based measures of brain function.在精神病学中寻找生物标志物:基于脑电图的大脑功能测量。
Am J Med Genet B Neuropsychiatr Genet. 2014 Mar;165B(2):111-21. doi: 10.1002/ajmg.b.32208. Epub 2013 Nov 25.
5
Psychiatric disorders from EEG signals through deep learning models.通过深度学习模型从脑电图信号中识别精神疾病
IBRO Neurosci Rep. 2024 Sep 24;17:300-310. doi: 10.1016/j.ibneur.2024.09.003. eCollection 2024 Dec.
10
Multi-class classification model for psychiatric disorder discrimination.用于精神疾病鉴别的多类别分类模型。
Int J Med Inform. 2023 Feb;170:104926. doi: 10.1016/j.ijmedinf.2022.104926. Epub 2022 Nov 12.

本文引用的文献

2
P300 in schizophrenia: Then and now.精神分裂症的 P300:过去与现在。
Biol Psychol. 2024 Mar;187:108757. doi: 10.1016/j.biopsycho.2024.108757. Epub 2024 Feb 3.
5
6
Must-have Qualities of Clinical Research on Artificial Intelligence and Machine Learning.人工智能和机器学习临床研究的必备素质
Balkan Med J. 2023 Jan 23;40(1):3-12. doi: 10.4274/balkanmedj.galenos.2022.2022-11-51. Epub 2022 Dec 29.
8
Harmonized-Multinational qEEG norms (HarMNqEEG).协调多国 qEEG 标准(HarMNqEEG)。
Neuroimage. 2022 Aug 1;256:119190. doi: 10.1016/j.neuroimage.2022.119190. Epub 2022 Apr 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验