Koike Ryotaro, Kidera Akinori, Ota Motonori
Nagoya University, Japan.
Protein Sci. 2009 Oct;18(10):2060-6. doi: 10.1002/pro.218.
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand-binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.
转移酶和水解酶催化不同的化学反应,并且在配体结合时表现出不同的动态响应。为了使配体分子与周围的水隔离,转移酶通过闭合裂隙将其埋入蛋白质内部,而水解酶则经历微小的构象变化,使配体分子暴露于溶剂中。尽管存在这些不同的配体结合模式,但一些转移酶和水解酶是同源的。为了阐明在相同的支架结构下如何实现如此不同的催化模式,我们研究了15个SCOP超家族中配体分子的溶剂可及性,每个超家族都包含转移酶和水解酶催化结构域。与水解酶不同,我们发现九个转移酶超家族采用两种主要策略,即寡聚化和结构域融合,来隔离配体分子。转移酶招募的亚基和结构域通常充当配体分子的覆盖物。转移酶用于隔离配体分子的其他策略包括催化位点的重新定位、二级结构元件的重排以及外围区域的插入。这些发现为蛋白质如何在有限数量的支架结构下进化并获得不同功能提供了见解。