Suppr超能文献

通过寡聚状态修饰将二聚吡喃糖氧化酶的底物范围从单糖偏好转变为糖苷偏好。

Shifting the substrate scope of dimeric pyranose oxidase from monosaccharide to glycoside preference through oligomeric state modification.

作者信息

Kostelac Anja, Hermann Enikő, Peterbauer Clemens, Oostenbrink Chris, Haltrich Dietmar

机构信息

Department of Food Science and Technology, BOKU University, Vienna, Austria.

Doctoral Programme BioToP - Biomolecular Technology of Proteins, BOKU University, Vienna, Austria.

出版信息

FEBS J. 2025 May;292(9):2323-2337. doi: 10.1111/febs.70004. Epub 2025 Feb 6.

Abstract

Pyranose oxidase (POx) and C-glycoside oxidase (CGOx) are FAD-dependent oxidoreductases belonging to the glucose-methanol-choline oxidoreductase superfamily and share the same sequence space. Despite a shared structural fold, these two members possess homologous domains that enable (arm and head domain) or disable (insertion-1 domain and barrel-shaped bottom) oligomerization. POxs with a higher oligomerization state (dimeric or tetrameric) exclusively catalyze the oxidation of monosaccharides (d-glucose, d-xylose). In contrast, the monomeric state of POxs/CGOxs is observed to prefer glycosides (homoorientin, phlorizin) and has low activity with free monosaccharides. We aimed to engineer dimeric POx from Kitasatospora aureofaciens (KaPOx) to form a functional monomer, and monomeric POx/CGOx from Streptomyces canus (ScPOx) to a dimeric structure. Deletion of the head and arm domains of the KaPOx subunit resulted in enzyme variants with a less hydrophobic surface, thus affecting its oligomerization. These monomeric KaPOx variants KaPOx_xal and KaPOx_xalh resembled monomeric wild-type POxs/CGOxs and preferred glycosides as substrates over monosaccharides with catalytic efficiencies for phlorizin being 24 × 10 higher compared to those for d-xylose. The wild-type dimeric KaPOx showed no activity towards glycosides. We hypothesize that KaPOx_xalh is unable to react with monosaccharides because the introduced mutations alter the positions of monosaccharide-binding residues. The inability of KaPOx to react with glycosides is likely caused by steric hindrance and the inaccessibility of the active site to bulky glycosides due to dimerization. The attempt to engineer ScPOx into a dimeric structure failed at the stage of soluble expression, likely due to exposed hydrophobic patches and aggregation.

摘要

吡喃糖氧化酶(POx)和C-糖苷氧化酶(CGOx)是依赖黄素腺嘌呤二核苷酸(FAD)的氧化还原酶,属于葡萄糖-甲醇-胆碱氧化还原酶超家族,并且共享相同的序列空间。尽管具有共同的结构折叠,但这两个成员拥有同源结构域,这些结构域能够(臂结构域和头部结构域)或阻止(插入-1结构域和桶状底部)寡聚化。具有较高寡聚化状态(二聚体或四聚体)的POx专门催化单糖(d-葡萄糖、d-木糖)的氧化。相比之下,观察到POx/CGOx的单体状态更倾向于糖苷(高车前素、根皮苷),并且对游离单糖的活性较低。我们旨在将来自金色链霉菌(Kitasatospora aureofaciens,KaPOx)的二聚体POx改造为功能性单体,并将来自犬链霉菌(Streptomyces canus,ScPOx)的单体POx/CGOx改造为二聚体结构。KaPOx亚基的头部和臂结构域的缺失导致酶变体的表面疏水性降低,从而影响其寡聚化。这些单体KaPOx变体KaPOx_xal和KaPOx_xalh类似于单体野生型POx/CGOx,与单糖相比更倾向于以糖苷为底物,根皮苷的催化效率比d-木糖高24×10倍。野生型二聚体KaPOx对糖苷没有活性。我们推测KaPOx_xalh无法与单糖反应,因为引入的突变改变了单糖结合残基的位置。KaPOx无法与糖苷反应可能是由于空间位阻以及由于二聚化导致活性位点无法接近庞大的糖苷。将ScPOx改造为二聚体结构的尝试在可溶性表达阶段失败,可能是由于暴露的疏水区域和聚集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8568/12062775/88103c869512/FEBS-292-2323-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验