Alexander Merrill W, Stich Troy A, Brynda Marcin, Yeagle Gregory J, Fettinger James C, De Hont Raymond, Reiff William M, Schulz Charles E, Britt R David, Power Philip P
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.
J Am Chem Soc. 2009 Sep 9;131(35):12693-702. doi: 10.1021/ja903439t.
The monomeric iron(II) amido derivatives Fe{N(H)Ar*}(2) (1), Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2), and Fe{N(H)Ar(#)}(2) (2), Ar(#) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2), were synthesized and studied in order to determine the effects of geometric changes on their unusual magnetic properties. The compounds, which are the first stable homoleptic primary amides of iron(II), were obtained by the transamination of Fe{N(SiMe(3))(2)}(2), with HN(SiMe(3))(2) elimination, by the primary amines H(2)NAr* or H(2)NAr(#). X-ray crystallography showed that they have either strictly linear (1) or bent (2, N-Fe-N = 140.9(2) degrees ) iron coordination. Variable temperature magnetization and applied magnetic field Mossbauer spectroscopy studies revealed a very large dependence of the magnetic properties on the metal coordination geometry. At ambient temperature, the linear 1 displayed an effective magnetic moment in the range 7.0-7.50 mu(B), consistent with essentially free ion magnetism. There is a very high internal orbital field component, H(L) approximately 170 T which is only exceeded by a H(L) approximately 203 T of Fe{C(SiMe(3))(3)}(2). In contrast, the strongly bent 2 displayed a significantly lower mu(eff) value in the range 5.25-5.80 mu(B) at ambient temperature and a much lower orbital field H(L) value of 116 T. The data for the two amido complexes demonstrate a very large quenching of the orbital magnetic moment upon bending the linear geometry. In addition, a strong correlation of H(L) with overall formal symmetry is confirmed. ESR spectroscopy supports the existence of large orbital magnetic moments in 1 and 2, and DFT calculations provide good agreement with the physical data.
合成并研究了单体铁(II)氨基衍生物Fe{N(H)Ar*}(2)(1,Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2))和Fe{N(H)Ar#}(2)(2,Ar# = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2)),以确定几何结构变化对其异常磁性能的影响。这些化合物是铁(II)的首批稳定的同配体伯酰胺,通过Fe{N(SiMe(3))(2)}(2)与伯胺H(2)NAr*或H(2)NAr#进行转氨反应并消除HN(SiMe(3))(2)而得到。X射线晶体学表明它们具有严格线性(1)或弯曲(2,N-Fe-N = 140.9(2)°)的铁配位结构。变温磁化和外加磁场穆斯堡尔光谱研究表明,磁性能对金属配位几何结构有很大的依赖性。在室温下,线性的1表现出7.0 - 7.50 μB范围内的有效磁矩,这与基本自由离子磁性一致。存在非常高的内轨道场分量,H(L)约为170 T,只有Fe{C(SiMe(3))(3)}(2)的H(L)约为203 T超过它。相比之下,强烈弯曲的2在室温下表现出明显更低的μ(eff)值,在5.25 - 5.80 μB范围内,并且轨道场H(L)值低得多,为116 T。这两种氨基配合物的数据表明,线性几何结构弯曲时轨道磁矩有很大的猝灭。此外,证实了H(L)与整体形式对称性有很强的相关性。电子顺磁共振光谱支持1和2中存在大的轨道磁矩,密度泛函理论计算与物理数据吻合良好。