Dept. of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025, Pusztaszeri út 59-67, Budapest, Hungary.
J Neurophysiol. 2009 Oct;102(4):2538-53. doi: 10.1152/jn.91318.2008. Epub 2009 Aug 12.
Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg(2+)] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short epoch of high-frequency oscillation (HFO; 400-800 Hz) was observed during the first 10 ms of SLE onset. GABAergic synaptic input currents to CA3 pyramidal cells were synchronized and coincided with HFO, whereas the glutamatergic input lagged by approximately 10 ms. If the intracellular [Cl(-)] remained unperturbed (cell-attached recordings) or was set high with whole cell electrode solution, CA3 pyramidal cell firing peaked with HFO and GABAergic input. By contrast, with low intracellular [Cl(-)], spikes of CA3 pyramidal cells lagged behind HFO and GABAergic input. This temporal arrangement of HFO, synaptic input sequence, synchrony of GABAergic currents, and pyramidal cell firing emerged gradually with preictal discharges until the SLE onset. Blockade of GABA(A) receptor-mediated currents by picrotoxin reduced the inter-SLE interval and the number of preictal discharges and did not block recurrent SLEs. Our data suggest that dynamic changes of the functional properties of GABAergic input contribute to ictogenesis and GABAergic and glutamatergic inputs are both excitatory at the instant of SLE onset. At the SLE onset GABAergic input contributes to synchronization and recruitment of pyramidal cells. We conjecture that this network state is reached by an activity-dependent shift in GABA reversal potential during the preictal phase.
在这里,我们研究了 CA3 锥体神经元的谷氨酸能和 GABA 能突触输入的动力学如何导致在低镁(2+)人工脑脊液中孵育的幼年(P10-13)大鼠海马切片中自发性反复性癫痫样事件(SLEs)的自发出现和演变。在 CA3 锥体层的场电位记录中,在 SLE 发作的前 10 毫秒期间观察到短的高频振荡(HFO;400-800 Hz)时段。CA3 锥体细胞的 GABA 能突触输入电流与 HFO 同步,并与 HFO 同时发生,而谷氨酸能输入则滞后约 10 毫秒。如果细胞内[Cl(-)]保持不变(细胞附着记录)或用全细胞电极溶液设置为高值,则 CA3 锥体细胞的放电与 HFO 和 GABA 能输入峰值重合。相比之下,在低细胞内[Cl(-)]下,CA3 锥体细胞的尖峰滞后于 HFO 和 GABA 能输入。这种 HFO、突触输入序列、GABA 能电流的同步性和 CA3 锥体细胞放电的时间安排随着痫性发作前的放电逐渐出现,直到 SLE 发作。用印防己毒素阻断 GABA(A)受体介导的电流会减少 SLE 间期和痫性发作前放电的数量,但不会阻断反复性 SLE。我们的数据表明,GABA 能输入的功能特性的动态变化有助于致痫形成,并且 GABA 能和谷氨酸能输入在 SLE 发作时都是兴奋性的。在 SLE 发作时,GABA 能输入有助于同步和募集锥体细胞。我们推测,在痫性发作前阶段,GABA 反转电位的活动依赖性变化导致了这种网络状态的出现。