Drexel College of Medicine, Philadelphia, Pennsylvania 19129.
Department of Mathematics.
J Neurosci. 2020 Mar 25;40(13):2764-2775. doi: 10.1523/JNEUROSCI.2370-19.2020. Epub 2020 Feb 26.
Recurrent seizures, which define epilepsy, are transient abnormalities in the electrical activity of the brain. The mechanistic basis of seizure initiation, and the contribution of defined neuronal subtypes to seizure pathophysiology, remains poorly understood. We performed two-photon calcium imaging in neocortex during temperature-induced seizures in male and female Dravet syndrome (+/-) mice, a neurodevelopmental disorder with prominent temperature-sensitive epilepsy. Mean activity of both putative principal cells and parvalbumin-positive interneurons (PV-INs) was higher in +/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from +/- mice. Hence, PV-IN activity remains intact interictally in +/- mice, yet exhibits decreased synchrony immediately before seizure onset. We suggest that impaired PV-IN synchronization may contribute to the transition to the ictal state during temperature-induced seizures in Dravet syndrome. Epilepsy is a common neurological disorder defined by recurrent, unprovoked seizures. However, basic mechanisms of seizure initiation and propagation remain poorly understood. We performed two-photon calcium imaging in an experimental model of Dravet syndrome (+/- mice)-a severe neurodevelopmental disorder defined by temperature-sensitive, treatment-resistant epilepsy-and record activity of putative excitatory neurons and parvalbumin-positive GABAergic neocortical interneurons (PV-INs) during naturalistic seizures induced by increased core body temperature. PV-IN activity was higher in +/- relative to wild-type controls during quiet wakefulness. However, wild-type PV-INs showed progressive synchronization in response to temperature elevation that was absent in PV-INs from +/- mice before seizure onset. Hence, impaired PV-IN synchronization may contribute to transition to seizure in Dravet syndrome.
反复发作的癫痫定义为大脑电活动的短暂异常。发作起始的机制以及特定神经元亚型对发作病理生理学的贡献仍知之甚少。我们在雄性和雌性德拉维特综合征( +/- )小鼠的体温诱导性癫痫发作期间进行了新皮层的双光子钙成像,这是一种具有明显体温敏感性癫痫的神经发育障碍。在静息觉醒期间和核心体温升高时, +/- 小鼠的潜在主要神经元和 Parvalbumin 阳性中间神经元(PV-INs)的平均活动均高于野生型对照。然而,野生型 PV-INs 在体温升高时表现出逐渐同步,而 +/- 小鼠的 PV-INs 则没有。因此, +/- 小鼠在癫痫发作间期 PV-IN 活动保持完整,但在癫痫发作前即刻表现出同步性降低。我们认为,PV-IN 同步障碍可能导致德拉维特综合征体温诱导性癫痫发作期间向发作状态的转变。癫痫是一种常见的神经系统疾病,其特征是反复发作的、无诱因的癫痫发作。然而,发作起始和传播的基本机制仍知之甚少。我们在德拉维特综合征( +/- )小鼠的实验模型中进行了双光子钙成像 - 这是一种由体温敏感、治疗抵抗性癫痫定义的严重神经发育障碍 - 并在体温升高引起的自然发作期间记录了潜在兴奋性神经元和 Parvalbumin 阳性 GABA 能新皮层中间神经元(PV-INs)的活动。在静息觉醒期间, +/- 小鼠的 PV-IN 活动高于野生型对照。然而,野生型 PV-INs 在体温升高时表现出逐渐同步,而 +/- 小鼠的 PV-INs 则没有。因此,PV-IN 同步障碍可能导致德拉维特综合征的发作转变。