Price Carol W, Leslie Daniel C, Landers James P
Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
Lab Chip. 2009 Sep 7;9(17):2484-94. doi: 10.1039/b907652m. Epub 2009 Jun 22.
As recently as the early 1990s, DNA purification was time-consuming, requiring the use of toxic, hazardous reagents. The advent of solid phase extraction techniques and the availability of commercial kits for quick and reliable DNA extraction has relegated those early techniques largely to the history books. High quality DNA can now be extracted from whole blood, serum, saliva, urine, stool, cerebral spinal fluid, tissues, and cells in less time without sacrificing recovery. Having achieved such a radical change in the methodology of DNA extraction, focus has shifted to adapting these methods to a miniaturized system, or "lab-on-a-chip" (A. Manz, N. Graber and H. M. Widmer, Sens. Actuators, B, 1990, 1, 244-248). Manz et al.'s concept of a "miniaturized total chemical analysis system" (microTAS) involved a silicon chip that incorporated sample pretreatment, separation and detection. This review will focus on the first of these steps, sample pretreatment in the form of DNA purification. The intention of this review is to provide an overview of the fundamentals of nucleic acid purification and solid phase extraction (SPE) and to discuss specific microchip DNA extraction successes and challenges. In order to fully appreciate the advances in DNA purification, a brief review of the history of DNA extraction is provided so that the reader has an understanding of the impact that the development of SPE techniques have had. This review will highlight the different methods of nucleic acid extraction (Table 1), including relevant citations, but without an exhaustive summary of the literature. A recent review by Wen et al. (J. Wen, L. A. Legendre, J. M. Bienvenue and J. P. Landers, Anal. Chem., 2008, 80, 6472-6479) covers solid phase extraction methods with a greater focus on their incorporation into integrated microfluidic systems.
就在20世纪90年代初,DNA纯化还很耗时,需要使用有毒、有害的试剂。固相萃取技术的出现以及用于快速可靠DNA提取的商业试剂盒的问世,已将那些早期技术大多归入了历史。现在可以在更短的时间内从全血、血清、唾液、尿液、粪便、脑脊液、组织和细胞中提取高质量的DNA,且不影响回收率。在DNA提取方法上实现了如此巨大的变革之后,重点已转向使这些方法适用于小型化系统,即“芯片实验室”(A. 曼茨、N. 格拉伯和H. M. 维德默,《传感器与执行器B》,1990年,第1卷,第244 - 248页)。曼茨等人提出的“小型化全化学分析系统”(μTAS)概念涉及一种集成了样品预处理、分离和检测功能的硅芯片。本综述将聚焦于这些步骤中的第一步,即DNA纯化形式的样品预处理。本综述的目的是概述核酸纯化和固相萃取(SPE)的基本原理,并讨论特定微芯片DNA提取的成功案例和挑战。为了充分理解DNA纯化方面的进展,先简要回顾一下DNA提取的历史,以便读者了解SPE技术的发展所产生的影响。本综述将重点介绍核酸提取的不同方法(表1),包括相关参考文献,但不会对文献进行详尽总结。温等人最近的一篇综述(J. 温、L. A. 勒让德、J. M. 比恩维尼和J. P. 兰德斯,《分析化学》,2008年,第80卷,第6472 - 6479页)涵盖了固相萃取方法,且更侧重于它们在集成微流控系统中的应用。