Suppr超能文献

两种不同加工技术对预涂底层金属合金的义齿修复丙烯酸树脂的体外拉伸粘结强度。

In vitro tensile bond strength of denture repair acrylic resins to primed base metal alloys using two different processing techniques.

机构信息

University of Texas, Houston Dental Branch, Houston, TX, USA.

出版信息

J Prosthodont. 2009 Dec;18(8):676-83. doi: 10.1111/j.1532-849X.2009.00499.x. Epub 2009 Aug 4.

Abstract

PURPOSE

Approximately 38% of removable partial denture (RPD) failures involve fracture at the alloy/acrylic interface. Autopolymerizing resin is commonly used to repair RPDs. Poor chemical bonding of repair acrylic to base metal alloys can lead to microleakage and failure of the bond. Therefore, ideal repair techniques should provide a strong, adhesive bond. This investigation compared the tensile bond strength between cobalt-chromium (Super Cast, Pentron Laboratory Technologies, Llc., Wallingford, CT) and nickel-chromium (Rexalloy, Pentron Laboratory Technologies, Llc.) alloys and autopolymerized acrylic resin (Dentsply Repair Material, Dentsply Int, Inc, York, Pa) using three primers containing different functional monomers [UBar (UB), Sun Medical Co., Ltd., Shiga, Japan: Alloy Primer (AP) Kuraray Medical Inc., Okayama, Japan; and MR Bond (MRB) Tokyuyama Dental Corp., Tokyo, Japan] and two processing techniques (bench cure and pressure-pot cure).

MATERIAL AND METHODS

One hundred and twenty eight base metal alloy ingots were polished, air abraded, and ultrasonically cleaned. The control group was not primed. Specimens in the test groups were primed with one of the three metal primers. Autopolymerized acrylic resin material was bonded to the metal surfaces. Half the specimens were bench cured, and the other half were cured in a pressure pot. All specimens were stored in distilled water for 24 hours at 37 degrees C. The specimens were debonded under tension at a crosshead speed of 0.05 cm/min. The forces at which the bond failed were noted. Data were analyzed using ANOVA. Fisher's PLSD post hoc test was used to determine significant differences (p < 0.05). Failure modes of each specimen were evaluated under a dissecting microscope.

RESULTS

Significant differences in bond strength were observed between combinations of primers, curing methods, and alloys. Primed sandblasted specimens that were pressure-pot-cured had significantly higher bond strengths than primed sandblasted bench-cured specimens. The pressure-pot-curing method had a significant effect on bond strength of all specimens except Co-Cr alloy primed with UB. The highest bond strength was observed for both Co-Cr and Ni-Cr alloys that were sandblasted, primed with MRB, and pressure-pot cured. Co-Cr alloys primed with UB had the lowest bond strength whether bench cured or pressure-pot cured. Primed specimens generally experienced cohesive bond failures within the primer or acrylic resin. Nonprimed specimens generally experienced adhesive bond failures at the resin/metal interface.

CONCLUSIONS

Within the limitations of this study, MRB provided the highest bond strength to both Ni-Cr and Co-Cr alloys. Generally, bond strength improved significantly when specimens were primed. Pressure-pot curing, in most cases, resulted in higher bond strength than bench curing. The results of this in vitro study suggest that MRB metal primer can be used to increase bond strength of autopolymerized repair acrylic resin to base metal alloys. Curing autopolymerized acrylic under pressure potentially increases bond strength.

摘要

目的

约 38%的可摘局部义齿(RPD)失败涉及合金/丙烯酸界面的断裂。自聚物树脂通常用于修复 RPD。修复用丙烯酸对基底金属合金的化学结合不良会导致微渗漏和结合失败。因此,理想的修复技术应提供牢固的、有粘性的结合。本研究比较了三种含有不同官能单体的底漆(UBar [UB],日本 Sun Medical Co.,Shiga:Alloy Primer [AP],日本 Kuraray Medical Inc.;和 MR Bond [MRB],日本 Tokyuyama Dental Corp.)与钴铬(Super Cast,Pentron Laboratory Technologies,LLC.,Wallingford,CT)和镍铬(Rexalloy,Pentron Laboratory Technologies,LLC.)合金和自聚物丙烯酸树脂(Dentsply Repair Material,Dentsply Int,Inc.,York,PA)之间的拉伸结合强度,使用三种底漆(UBar(UB),日本 Sun Medical Co.,Ltd.,Shiga:Alloy Primer(AP),日本 Kuraray Medical Inc.;和 MR Bond(MRB),日本 Tokyuyama Dental Corp.,东京)和两种加工技术(台架固化和压力罐固化)。

材料和方法

将 128 个基底金属合金锭抛光、喷砂和超声清洗。对照组未进行底漆处理。测试组的试件用三种金属底漆之一进行底漆处理。自聚物丙烯酸树脂材料被粘合到金属表面。一半的样本进行台架固化,另一半在压力罐中固化。所有样本均在 37°C 的蒸馏水中储存 24 小时。将样本在 0.05 cm/min 的十字头速度下进行拉伸分离。记录粘合失效时的力。使用方差分析对数据进行分析。使用 Fisher's PLSD 事后检验来确定显著差异(p < 0.05)。在解剖显微镜下评估每个样本的失效模式。

结果

底漆、固化方法和合金组合之间的结合强度存在显著差异。喷砂和经压力罐固化的底漆处理试件的结合强度明显高于喷砂和台架固化的底漆处理试件。压力罐固化方法对除 Co-Cr 合金用 UB 底漆处理的试件外的所有试件的结合强度都有显著影响。对于喷砂、用 MRB 底漆处理并经压力罐固化的 Co-Cr 和 Ni-Cr 合金,观察到最高的结合强度。Co-Cr 合金用 UB 底漆处理的试件,无论是台架固化还是压力罐固化,其结合强度均最低。底漆处理的试件通常在底漆或丙烯酸树脂内发生内聚性粘合失效。未底漆处理的试件通常在树脂/金属界面处发生粘着性粘合失效。

结论

在本研究的限制范围内,MRB 为 Ni-Cr 和 Co-Cr 合金提供了最高的结合强度。一般来说,试件经底漆处理后,结合强度显著提高。在大多数情况下,压力罐固化比台架固化产生更高的结合强度。本体外研究结果表明,MRB 金属底漆可用于提高自聚物修复丙烯酸树脂与基底金属合金的结合强度。在压力下聚合自聚物可能会增加结合强度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验