Onyango Isaac G, Lu Jianghua, Rodova Mariana, Lezi E, Crafter Adam B, Swerdlow Russell H
Department of Neurology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
Biochim Biophys Acta. 2010 Jan;1802(1):228-34. doi: 10.1016/j.bbadis.2009.07.014. Epub 2009 Aug 11.
Mitochondrial dysfunction has severe cellular consequences, and is linked to aging and neurological disorders in humans. Impaired energy supply or Ca(2+) buffering, increased ROS production, or control of apoptosis by mitochondria may contribute to the progressive decline of long-lived postmitotic cells. Mitochondrial biogenesis refers to the process via which cells increase their individual mitochondrial mass. Mitochondrial biogenesis may represent an attempt by cells to increase their aerobic set point, or an attempt to maintain a pre-existing aerobic set point in the face of declining mitochondrial function. Neuronal mitochondrial biogenesis itself has been poorly studied, but investigations from other tissues and model systems suggest a series of transcription factors, transcription co-activators, and signal transduction proteins should function to regulate mitochondrial number and mass within neurons. We review data pertinent to the mitochondrial biogenesis field, and discuss implications for brain aging and neurodegenerative disease research efforts.
线粒体功能障碍会产生严重的细胞后果,并且与人类衰老和神经紊乱有关。能量供应受损或钙(Ca2+)缓冲功能受损、活性氧(ROS)生成增加,或者线粒体对细胞凋亡的调控,都可能导致长寿命的有丝分裂后细胞逐渐衰退。线粒体生物合成是指细胞增加其个体线粒体质量的过程。线粒体生物合成可能代表细胞试图提高其有氧设定点,或者是在面对线粒体功能下降时试图维持预先存在的有氧设定点。神经元线粒体生物合成本身的研究较少,但来自其他组织和模型系统的研究表明,一系列转录因子、转录共激活因子和信号转导蛋白应发挥作用,以调节神经元内线粒体的数量和质量。我们回顾了与线粒体生物合成领域相关的数据,并讨论了其对脑衰老和神经退行性疾病研究工作的影响。