Suppr超能文献

通过同源建模和分子对接对有机污染物的核激素受体进行计算机模拟预测。

In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking.

作者信息

Wu Bing, Zhang Yan, Kong Jie, Zhang Xuxiang, Cheng Shupei

机构信息

State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.

出版信息

Toxicol Lett. 2009 Dec 1;191(1):69-73. doi: 10.1016/j.toxlet.2009.08.005. Epub 2009 Aug 14.

Abstract

Homology modeling and molecular docking were used to in silico predict the rat nuclear hormone receptors of different organic pollutants. Rat aryl hydrocarbon receptor (rAhR), constitutive androstane receptor (rCAR) and pregnane X receptor (rPXR) were chosen as the target nuclear receptors. 3D models of ligand binding domains of rAhR, rCAR and rPXR were constructed by MODELLER 9V6 and assessed by the Procheck and Prosa 2003. Surflex-Dock program was applied to bind the different organic pollutants into the three receptors to predict their affinities. The results of docking experiments demonstrated that three polybrominated dibenzofurans (PBDFs, including TretaBDF, PentaBDF and HexaBDF) and 3,3',4,4',5'-pentachlorobiphenyl (PCB126) would be better categorized by rAhR-dependent mechanism, but four polybrominated diphenyl ethers (PBDEs, including BDE47, BDE80, BDE99 and BDE153) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) by rCAR and rPXR-dependent mechanism. For benzo(a)pyrene and pyrene, they have high affinities with the three target receptors, which suggests that "crosstalk" among the receptors might occur during the receptor induction. The results of this study are consistent with those of animal experiments reported by previous literatures, which suggest that homology modeling and molecular docking would have the potential to predict the nuclear hormone receptors of environmental pollutants.

摘要

采用同源建模和分子对接技术在计算机上预测不同有机污染物的大鼠核激素受体。选择大鼠芳烃受体(rAhR)、组成型雄烷受体(rCAR)和孕烷X受体(rPXR)作为目标核受体。利用MODELLER 9V6构建rAhR、rCAR和rPXR配体结合域的三维模型,并通过Procheck和Prosa 2003进行评估。应用Surflex-Dock程序将不同有机污染物与这三种受体结合,以预测它们的亲和力。对接实验结果表明,三种多溴二苯并呋喃(PBDFs,包括四溴二苯并呋喃、五溴二苯并呋喃和六溴二苯并呋喃)和3,3',4,4',5'-五氯联苯(PCB126)更倾向于通过rAhR依赖机制进行分类,而四种多溴二苯醚(PBDEs,包括BDE47、BDE80、BDE99和BDE153)和2,2',4,4',5,5'-六氯联苯(PCB153)则通过rCAR和rPXR依赖机制进行分类。对于苯并[a]芘和芘,它们与三种目标受体具有高亲和力,这表明在受体诱导过程中受体之间可能发生“串扰”。本研究结果与先前文献报道的动物实验结果一致,这表明同源建模和分子对接有潜力预测环境污染物的核激素受体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验