Gubellini Paolo, Picconi Barbara, Di Filippo Massimiliano, Calabresi Paolo
Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216 (CNRS/Université de la Méditerranée), Marseille, France.
Biochim Biophys Acta. 2010 Jan;1802(1):151-61. doi: 10.1016/j.bbadis.2009.08.001. Epub 2009 Aug 14.
Mitochondrial dysfunctions have been implicated in the cellular processes underlying several neurodegenerative disorders affecting the basal ganglia. These include Huntington's chorea and Parkinson's disease, two highly debilitating motor disorders for which recent research has also involved gene mutation linked to mitochondrial deficits. Experimental models of basal ganglia diseases have been developed by using toxins able to disrupt mitochondrial function: these molecules act by selectively inhibiting mitochondrial respiratory complexes, uncoupling cellular respiration. This in turn leads to oxidative stress and energy deficit that trigger critical downstream mechanisms, ultimately resulting in neuronal vulnerability and loss. Here we review the molecular and cellular downstream effects triggered by mitochondrial dysfunction, and the different experimental models that are obtained by the administration of selective mitochondrial toxins or by the expression of mutant genes.
线粒体功能障碍与影响基底神经节的几种神经退行性疾病的细胞过程有关。这些疾病包括亨廷顿舞蹈症和帕金森病,这两种严重的运动障碍最近的研究还涉及与线粒体缺陷相关的基因突变。通过使用能够破坏线粒体功能的毒素建立了基底神经节疾病的实验模型:这些分子通过选择性抑制线粒体呼吸复合物起作用,使细胞呼吸解偶联。这进而导致氧化应激和能量不足,触发关键的下游机制,最终导致神经元易损性和丧失。在这里,我们综述了线粒体功能障碍引发的分子和细胞下游效应,以及通过施用选择性线粒体毒素或通过突变基因表达获得的不同实验模型。