Suppr超能文献

研讨会概述与历史视角:树-树突触:过去、现在与未来

Symposium overview and historical perspective: dendrodendritic synapses: past, present, and future.

作者信息

Shepherd Gordon M

机构信息

Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

出版信息

Ann N Y Acad Sci. 2009 Jul;1170:215-23. doi: 10.1111/j.1749-6632.2009.03937.x.

Abstract

Synapses between dendrites are at the core of mechanisms for processing odor stimuli, as well as for processing in many other brain systems. A perspective on the development of our understanding of these mechanisms may therefore be of interest. Studies of the olfactory bulb leading to the discovery of dendrodendritic synapses began in 1959. They involved a multidisciplinary approach that included Golgi cell morphology, electrophysiology, a microcircuit wiring diagram, membrane biophysics, theory of field potentials, cable theory, dendritic electrotonus theory, computational models of mitral and granule cells, prediction by the models of dendrodendritic synaptic interactions, confirmation with electron microscopy using single sections and serial sections, and final integration in the reports of feedback and lateral inhibitory interactions in 1966 and 1968. Following the discovery of glomerular odor maps in the 1970s, the functional significance of the dendrodendritic inhibition in processing the maps has been increasingly documented. Recent experimental and computational studies are revealing how these synapses are organized into distributed systems for processing the odor maps. Future studies need to situate dendrodendritic mechanisms in these distributed systems and correlate them with the tight functional loops between olfactory bulb and olfactory cortex. Studies in awake behaving animals will be increasingly important. The relations of dendritic mechanisms to perception, memory, and the pathogenesis of disorders such as Alzheimer’s will be rich fields for study. Dendrites and their synapses should continue to provide ideal models for the study of basic mechanisms of cortical integration and the neural basis of smell.

摘要

树突之间的突触是处理气味刺激以及许多其他脑系统处理过程的核心机制。因此,对我们对这些机制理解的发展进行一番审视可能会很有意思。导致发现树突 - 树突突触的嗅球研究始于1959年。这些研究采用了多学科方法,包括高尔基细胞形态学、电生理学、微电路布线图、膜生物物理学、场电位理论、电缆理论、树突电紧张理论、二尖瓣和颗粒细胞的计算模型、树突 - 树突突触相互作用模型的预测、使用单切片和连续切片的电子显微镜确认,以及最终在1966年和1968年关于反馈和侧向抑制相互作用的报告中的整合。在20世纪70年代发现肾小球气味图谱之后,树突 - 树突抑制在处理这些图谱中的功能意义得到了越来越多的记录。最近的实验和计算研究正在揭示这些突触如何被组织成用于处理气味图谱的分布式系统。未来的研究需要将树突 - 树突机制置于这些分布式系统中,并将它们与嗅球和嗅觉皮层之间紧密的功能回路联系起来。对清醒行为动物的研究将变得越来越重要。树突机制与感知、记忆以及诸如阿尔茨海默氏症等疾病的发病机制之间的关系将是丰富的研究领域。树突及其突触应继续为研究皮层整合的基本机制和嗅觉的神经基础提供理想模型。

相似文献

1
Symposium overview and historical perspective: dendrodendritic synapses: past, present, and future.
Ann N Y Acad Sci. 2009 Jul;1170:215-23. doi: 10.1111/j.1749-6632.2009.03937.x.
2
Metabotropic glutamate receptors and dendrodendritic synapses in the main olfactory bulb.
Ann N Y Acad Sci. 2009 Jul;1170:224-38. doi: 10.1111/j.1749-6632.2009.03891.x.
3
Dendrodendritic synapses and functional compartmentalization in the olfactory bulb.
Ann N Y Acad Sci. 2009 Jul;1170:255-8. doi: 10.1111/j.1749-6632.2009.03881.x.
4
Computing with dendrodendritic synapses in the olfactory bulb.
Ann N Y Acad Sci. 2009 Jul;1170:264-9. doi: 10.1111/j.1749-6632.2009.03899.x.
6
GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb.
J Neurophysiol. 1981 Sep;46(3):639-48. doi: 10.1152/jn.1981.46.3.639.
7
Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb.
J Neurosci. 2000 Mar 15;20(6):2192-201. doi: 10.1523/JNEUROSCI.20-06-02192.2000.
8
Olfactory reciprocal synapses: dendritic signaling in the CNS.
Neuron. 1998 Apr;20(4):749-61. doi: 10.1016/s0896-6273(00)81013-2.
10
Dynamic gating of spike propagation in the mitral cell lateral dendrites.
Neuron. 2002 Mar 28;34(1):115-26. doi: 10.1016/s0896-6273(02)00628-1.

引用本文的文献

2
Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging.
Acta Neuropathol. 2022 Oct;144(4):651-676. doi: 10.1007/s00401-022-02477-6. Epub 2022 Aug 30.
3
The cell biology of synapse formation.
J Cell Biol. 2021 Jul 5;220(7). doi: 10.1083/jcb.202103052. Epub 2021 Jun 4.
5
A Neuronal Pathway that Commands Deceleration in Drosophila Larval Light-Avoidance.
Neurosci Bull. 2019 Dec;35(6):959-968. doi: 10.1007/s12264-019-00349-w. Epub 2019 Feb 27.

本文引用的文献

1
Learning mechanism for column formation in the olfactory bulb.
Front Integr Neurosci. 2007 Dec 30;1:12. doi: 10.3389/neuro.07.012.2007. eCollection 2007.
2
Dendritic action potentials connect distributed dendrodendritic microcircuits.
J Comput Neurosci. 2008 Apr;24(2):207-21. doi: 10.1007/s10827-007-0051-9. Epub 2007 Aug 3.
3
The olfactory granule cell: from classical enigma to central role in olfactory processing.
Brain Res Rev. 2007 Oct;55(2):373-82. doi: 10.1016/j.brainresrev.2007.03.005. Epub 2007 Mar 16.
4
Relational representation in the olfactory system.
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1953-8. doi: 10.1073/pnas.0608564104. Epub 2007 Jan 29.
5
Viral tracing identifies distributed columnar organization in the olfactory bulb.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12592-7. doi: 10.1073/pnas.0602032103. Epub 2006 Aug 8.
8
NEURONAL SYSTEMS CONTROLLING MITRAL CELL EXCITABILITY.
J Physiol. 1963 Aug;168(1):101-17. doi: 10.1113/jphysiol.1963.sp007180.
9
Dynamic gating of spike propagation in the mitral cell lateral dendrites.
Neuron. 2002 Mar 28;34(1):115-26. doi: 10.1016/s0896-6273(02)00628-1.
10
Odor encoding as an active, dynamical process: experiments, computation, and theory.
Annu Rev Neurosci. 2001;24:263-97. doi: 10.1146/annurev.neuro.24.1.263.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验