Suppr超能文献

过氧化物酶体生物发生中的小G蛋白:ADP核糖基化因子6的潜在参与

Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6.

作者信息

Anthonio Erin A, Brees Chantal, Baumgart-Vogt Eveline, Hongu Tsunaki, Huybrechts Sofie J, Van Dijck Patrick, Mannaerts Guy P, Kanaho Yasunori, Van Veldhoven Paul P, Fransen Marc

机构信息

Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium.

出版信息

BMC Cell Biol. 2009 Aug 17;10:58. doi: 10.1186/1471-2121-10-58.

Abstract

BACKGROUND

Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes.

RESULTS

Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology.

CONCLUSION

These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways.

摘要

背景

过氧化物酶体在几乎所有真核生物中执行多种重要功能。新的过氧化物酶体通过从预先存在的细胞器出芽形成,或者通过内质网的囊泡化从头形成。有人提出,ADP-核糖基化因子和COPI衣被蛋白复合物参与这些过程。

结果

在这里我们表明,所有在囊泡运输调节中起重要作用的小GTP酶之一缺陷的酿酒酵母菌株都含有功能性过氧化物酶体,并且与野生型菌株相比,在油酸生长的细胞中,arf1和arf3缺失菌株中这些细胞器的数量显著上调。此外,我们提供证据表明,酵母Arf3的哺乳动物同源物内源性Arf6的一部分与大鼠肝脏过氧化物酶体的细胞质面相关。尽管如此,Arf6的缺失既不影响过氧化物酶体丰度的调节,也不影响培养的胎儿肝细胞中过氧化物酶体蛋白的定位。然而,Arf1和Arf6的野生型、GTP水解缺陷型或(显性负性)GTP结合缺陷型的共过表达导致新合成的过氧化物酶体蛋白定位错误,并导致过氧化物酶体形态改变。

结论

这些观察结果表明,Arf6是哺乳动物过氧化物酶体生物发生中的关键参与者。此外,它们也有力地支持并扩展了特定Arf异构体对可能协同作用以调节特定运输途径的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e83/3224584/1bd6a045244d/1471-2121-10-58-1.jpg

相似文献

2
Binding and functions of ADP-ribosylation factor on mammalian and yeast peroxisomes.
J Biol Chem. 2005 Oct 14;280(41):34489-99. doi: 10.1074/jbc.M503497200. Epub 2005 Aug 12.
3
Small GTPases in peroxisome dynamics.
Biochim Biophys Acta. 2016 May;1863(5):1006-13. doi: 10.1016/j.bbamcr.2016.01.004. Epub 2016 Jan 8.
4
Peroxisome biogenesis: where Arf and coatomer might be involved.
Biochim Biophys Acta. 2006 Dec;1763(12):1678-87. doi: 10.1016/j.bbamcr.2006.08.036. Epub 2006 Aug 30.
6
ARF- and coatomer-mediated peroxisomal vesiculation.
Cell Biochem Biophys. 2000;32 Spring:27-36. doi: 10.1385/cbb:32:1-3:27.
8
Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane.
J Biol Chem. 2001 Dec 21;276(51):47834-9. doi: 10.1074/jbc.M106000200. Epub 2001 Oct 9.
10
Several ADP-ribosylation factor (Arf) isoforms support COPI vesicle formation.
J Biol Chem. 2011 Oct 14;286(41):35634-35642. doi: 10.1074/jbc.M111.261800. Epub 2011 Aug 15.

引用本文的文献

1
Convergent and divergent mechanisms of peroxisomal and mitochondrial division.
J Cell Biol. 2023 Sep 4;222(9). doi: 10.1083/jcb.202304076. Epub 2023 Aug 2.
2
Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis.
Nat Cell Biol. 2023 Aug;25(8):1157-1172. doi: 10.1038/s41556-023-01180-2. Epub 2023 Jul 3.
3
Peroxisome-Derived Hydrogen Peroxide Modulates the Sulfenylation Profiles of Key Redox Signaling Proteins in Flp-In T-REx 293 Cells.
Front Cell Dev Biol. 2022 Apr 26;10:888873. doi: 10.3389/fcell.2022.888873. eCollection 2022.
5
Peroxisome biogenesis, membrane contact sites, and quality control.
EMBO Rep. 2019 Jan;20(1). doi: 10.15252/embr.201846864. Epub 2018 Dec 10.
6
Pex35 is a regulator of peroxisome abundance.
J Cell Sci. 2017 Feb 15;130(4):791-804. doi: 10.1242/jcs.187914. Epub 2017 Jan 3.
9
Human sperm tail proteome suggests new endogenous metabolic pathways.
Mol Cell Proteomics. 2013 Feb;12(2):330-42. doi: 10.1074/mcp.M112.020552. Epub 2012 Nov 15.
10
Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER.
Biochim Biophys Acta. 2011 Oct;1813(10):1893-905. doi: 10.1016/j.bbamcr.2011.06.011. Epub 2011 Jul 2.

本文引用的文献

1
Peroxisome dynamics in cultured mammalian cells.
Traffic. 2009 Nov;10(11):1722-33. doi: 10.1111/j.1600-0854.2009.00970.x. Epub 2009 Aug 4.
2
Properties of the ubiquitin-pex5p thiol ester conjugate.
J Biol Chem. 2009 Apr 17;284(16):10504-13. doi: 10.1074/jbc.M808978200. Epub 2009 Feb 10.
3
An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region.
J Exp Bot. 2008;59(13):3523-31. doi: 10.1093/jxb/ern202. Epub 2008 Aug 13.
4
The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells.
Mol Biol Cell. 2008 Jun;19(6):2402-12. doi: 10.1091/mbc.e07-12-1287. Epub 2008 Mar 19.
5
Identification of a novel PEX14 mutation in Zellweger syndrome.
J Med Genet. 2008 Jun;45(6):376-83. doi: 10.1136/jmg.2007.056697. Epub 2008 Feb 19.
6
The peroxisome: still a mysterious organelle.
Histochem Cell Biol. 2008 Apr;129(4):421-40. doi: 10.1007/s00418-008-0396-9. Epub 2008 Feb 15.
7
Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers.
Curr Biol. 2008 Jan 22;18(2):102-8. doi: 10.1016/j.cub.2007.12.038.
8
Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation.
Biochim Biophys Acta. 2008 May;1783(5):760-9. doi: 10.1016/j.bbamcr.2007.10.018. Epub 2007 Nov 12.
9
Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts.
Nat Cell Biol. 2007 Dec;9(12):1381-91. doi: 10.1038/ncb1657. Epub 2007 Nov 18.
10
Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling.
Mol Cell Proteomics. 2007 Dec;6(12):2045-57. doi: 10.1074/mcp.M700169-MCP200. Epub 2007 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验