Suppr超能文献

混合治疗比较中的试验间方差结构建模。

Modeling between-trial variance structure in mixed treatment comparisons.

作者信息

Lu Guobing, Ades Ae

机构信息

Department of Community Based Medicine, University of Bristol, Cotham House, Cotham Hill, Bristol BS6 6JL, UK.

出版信息

Biostatistics. 2009 Oct;10(4):792-805. doi: 10.1093/biostatistics/kxp032. Epub 2009 Aug 17.

Abstract

In mixed treatment comparison (MTC) meta-analysis, modeling the heterogeneity in between-trial variances across studies is a difficult problem because of the constraints on the variances inherited from the MTC structure. Starting from a consistent Bayesian hierarchical model for the mean treatment effects, we represent the variance configuration by a set of triangle inequalities on the standard deviations. We take the separation strategy (Barnard and others, 2000) to specify prior distributions for standard deviations and correlations separately. The covariance matrix of the latent treatment arm effects can be employed as a vehicle to load the triangular constraints, which in addition allows incorporation of prior beliefs about the correlations between treatment effects. The spherical parameterization based on Cholesky decomposition (Pinheiro and Bates, 1996) is used to generate a positive-definite matrix for the prior correlations in Markov chain Monte Carlo (MCMC). Elicited prior information on correlations between treatment arms is introduced in the form of its equivalent data likelihood. The procedure is implemented in a MCMC framework and illustrated with example data sets from medical research practice.

摘要

在混合治疗比较(MTC)元分析中,由于MTC结构对方差的限制,对各研究间试验方差的异质性进行建模是一个难题。从均值治疗效应的一致贝叶斯层次模型出发,我们用标准差上的一组三角不等式来表示方差配置。我们采用分离策略(巴纳德等人,2000年)分别为标准差和相关性指定先验分布。潜在治疗组效应的协方差矩阵可作为加载三角约束的工具,这还允许纳入关于治疗效应之间相关性的先验信念。基于乔列斯基分解的球形参数化(皮涅罗和贝茨,1996年)用于在马尔可夫链蒙特卡罗(MCMC)中为先前相关性生成正定矩阵。关于治疗组之间相关性的引出先验信息以其等效数据似然的形式引入。该程序在MCMC框架中实现,并用医学研究实践中的示例数据集进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验