Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
J Cardiovasc Pharmacol. 2009 Sep;54(3):188-95. doi: 10.1097/FJC.0b013e3181b72c9f.
Nitric oxide (NO) exerts ubiquitous signaling via posttranslational modification of cysteine residues, a reaction termed S-nitrosylation. Important substrates of S-nitrosylation that influence cardiac function include receptors, enzymes, ion channels, transcription factors, and structural proteins. Cardiac ion channels subserving excitation-contraction coupling are potentially regulated by S-nitrosylation. Specificity is achieved in part by spatial colocalization of ion channels with nitric oxide synthases (NOSs), enzymatic sources of NO in biologic systems, and by coupling of NOS activity to localized calcium/second messenger concentrations. Ion channels regulate cardiac excitability and contractility in millisecond timescales, raising the possibility that NO-related species modulate heart function on a beat-to-beat basis. This review focuses on recent advances in understanding of NO regulation of the cardiac action potential and of the calcium release channel ryanodine receptor, which is crucial for the generation of force. S-Nitrosylation signaling is disrupted in pathological states in which the redox state of the cell is dysregulated, including ischemia, heart failure, and atrial fibrillation.
一氧化氮(NO)通过半胱氨酸残基的翻译后修饰发挥广泛的信号作用,这种反应称为 S-亚硝基化。影响心脏功能的 S-亚硝基化的重要底物包括受体、酶、离子通道、转录因子和结构蛋白。参与兴奋-收缩偶联的心脏离子通道可能受到 S-亚硝基化的调节。特异性部分是通过离子通道与一氧化氮合酶(NOS)的空间共定位来实现的,NOS 是生物系统中 NO 的酶源,并且通过将 NOS 活性与局部钙/第二信使浓度偶联来实现。离子通道在毫秒时间尺度上调节心脏的兴奋性和收缩性,这增加了 NO 相关物质在心跳基础上调节心脏功能的可能性。本综述重点介绍了关于 NO 调节心脏动作电位和钙释放通道ryanodine 受体的最新进展,ryanodine 受体对产生力至关重要。在细胞氧化还原状态失调的病理状态下,如缺血、心力衰竭和心房颤动,S-亚硝基化信号会被破坏。