Suppr超能文献

使用IMAC表面的SELDI-TOF MS全血清蛋白质组分析在特异性检测结直肠癌方面的局限性。

Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer.

作者信息

Wang Qi, Shen Jing, Li Zhen-fu, Jie Jian-zheng, Wang Wen-yue, Wang Jin, Zhang Zhong-tao, Li Zhi-xia, Yan Li, Gu Jin

机构信息

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, PR China.

出版信息

BMC Cancer. 2009 Aug 19;9:287. doi: 10.1186/1471-2407-9-287.

Abstract

BACKGROUND

Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC.

METHODS

A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS.

RESULTS

No CRC "specific" classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy.

CONCLUSION

In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment.

摘要

背景

据报道,对血清样本进行表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)分析能够从正常或对照患者中检测出结直肠癌(CRC)。我们开展了一项采用IMAC表面样本处理的SELDI-TOF MS方法来识别CRC的验证研究。

方法

使用SELDI-TOF-MS对一个包含154例CRC、67例对照癌症和117例非癌病症的338份血清样本的回顾性队列进行分析。

结果

未发现CRC“特异性”分类器。然而,一个由两个蛋白峰组成的分类器能以高精度将癌症与非癌病症区分开来。

结论

在本研究中,基于SELDI-TOF-MS的蛋白质表达谱分析方法未能识别出CRC。然而,这项技术在区分癌症患者与非癌人群方面很有前景;它可能有助于监测CRC治疗后的复发情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41b/2743709/f4ab920e14e4/1471-2407-9-287-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验