Suppr超能文献

A new information-theoretic measure to control the robustness-sensitivity trade-off for DMFFD point-set registration.

作者信息

Tustison Nicholas J, Awate Suyash P, Song Gang, Cook Tessa S, Gee James C

机构信息

University of Pennsylvania, Penn Image Computing and Science Laboratory, USA.

出版信息

Inf Process Med Imaging. 2009;21:215-26. doi: 10.1007/978-3-642-02498-6_18.

Abstract

An essential component of many medical image analysis protocols is the establishment and manipulation of feature correspondences. These image features can assume such forms spanning the range of functions of individual or regional pixel intensities to geometric structures extracted as a preprocessing segmentation step. Many algorithms focusing on the latter set of salient features attempt to reduce these structures to such geometric primitives as surfaces, curves and/or points for correspondence-based study. Although the latter geometric primitive forms the basis of many of these algorithms, unrealistic constraints such as assumptions of identical cardinality between point-sets hinder general usage. Furthermore, the local structure for certain point-sets derived from segmentation processes is often ignored. In this paper, we introduce a family of novel information-theoretic measures for pooint-set registration derived as a generalization of the well-known Shannon entropy known as the Havrda-Charvat-Tsallis entropy. This divergence measure permits a fine-tuning between robustness and sensitivity emphasis. In addition, we employ a directly manipulated free-form deformation (DMFFD) transformation model, a recently developed variant of the well-known FFD transformation model.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验