Suppr超能文献

基于哈夫达-查尔瓦特-塔利斯熵测度的点集配准。

Point set registration using Havrda-Charvat-Tsallis entropy measures.

机构信息

University of Virginia, Radiology, Charlottesville, VA 22903, USA.

出版信息

IEEE Trans Med Imaging. 2011 Feb;30(2):451-60. doi: 10.1109/TMI.2010.2086065. Epub 2010 Oct 11.

Abstract

We introduce a labeled point set registration algorithm based on a family of novel information-theoretic measures derived as a generalization of the well-known Shannon entropy. This generalization, known as the Havrda-Charvat-Tsallis entropy, permits a fine-tuning between solution types of varying degrees of robustness of the divergence measure between multiple point sets. A variant of the traditional free-form deformation approach, known as directly manipulated free-form deformation, is used to model the transformation of the registration solution. We provide an overview of its open source implementation based on the Insight Toolkit of the National Institutes of Health. Characterization of the proposed framework includes comparison with other state of the art kernel-based methods and demonstration of its utility for lung registration via labeled point set representation of lung anatomy.

摘要

我们介绍了一种基于一族新的信息论度量的有标签点集配准算法,这些度量是对著名的香农熵的推广。这种推广被称为 Havrda-Charvat-Tsallis 熵,可以在多个点集之间的散度度量的不同稳健性的解类型之间进行微调。传统的自由变形方法的一种变体,称为直接操作的自由变形,用于对配准解的变换进行建模。我们提供了一个基于美国国立卫生研究院的 Insight Toolkit 的其开源实现的概述。所提出框架的特点包括与其他基于核的最先进方法的比较,以及通过肺解剖的有标签点集表示演示其在肺配准中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验