Suppr超能文献

GFP 标签对 EB1 和 EB1 片段在体内定位的影响。

Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

Cytoskeleton (Hoboken). 2010 Jan;67(1):1-12. doi: 10.1002/cm.20409.

Abstract

EB1 is a microtubule plus-end tracking protein that plays a central role in the regulation of microtubule (MT) dynamics. GFP-tagged EB1 constructs are commonly used to study EB1 itself and also as markers of dynamic MT plus ends. To properly interpret these studies, it is important to understand the impact of tags on the behavior of EB1 and other proteins in vivo. To address this problem and improve understanding of EB1 function, we surveyed the localization of expressed EB1 fragments and investigated whether GFP tags alter these localizations. We found that neither N-terminal nor C-terminal tags are benign: tagged EB1 and EB1 fragments generally behave differently from their untagged counterparts. N-terminal tags significantly compromise the ability of expressed EB1 proteins to bind MTs and/or track MT plus ends, although they leave some MT-binding ability intact. C-terminally tagged EB1 constructs have localizations similar to the untagged constructs, initially suggesting that they are benign. However, most constructs tagged at either end cause CLIP-170 to disappear from MT plus ends. This effect is opposite to that of untagged full-length EB1, which recruits CLIP-170 to MTs. These observations demonstrate that although EB1-GFP can be a powerful tool for studying microtubule dynamics, it should be used carefully because it may alter the system that it is being used to study. In addition, some untagged fragments had unexpected localizations. In particular, an EB1 construct lacking the coiled-coil tracks MT plus ends, though weakly, providing evidence against the idea that EB1 +TIP behavior requires dimerization.

摘要

EB1 是一种微管正极追踪蛋白,在微管 (MT) 动力学的调节中起着核心作用。GFP 标记的 EB1 构建物通常用于研究 EB1 本身,也用作动态 MT 正极的标记物。为了正确解释这些研究,了解标签对 EB1 及其他蛋白质在体内行为的影响是很重要的。为了解决这个问题并提高对 EB1 功能的理解,我们调查了表达的 EB1 片段的定位,并研究了 GFP 标签是否改变了这些定位。我们发现,无论是 N 端还是 C 端的标签都不是良性的:标记的 EB1 和 EB1 片段通常与未标记的对应物表现不同。N 端标签显著损害了表达的 EB1 蛋白与 MT 结合和/或追踪 MT 正极的能力,尽管它们保留了一些 MT 结合能力。C 端标记的 EB1 构建物的定位与未标记的构建物相似,最初表明它们是良性的。然而,大多数末端标记的构建物导致 CLIP-170 从 MT 正极消失。这种效应与未标记的全长 EB1 相反,后者将 CLIP-170 募集到 MT 上。这些观察结果表明,尽管 EB1-GFP 可以成为研究微管动力学的有力工具,但应谨慎使用,因为它可能会改变它被用来研究的系统。此外,一些未标记的片段有出乎意料的定位。特别是,一个缺乏卷曲螺旋的 EB1 片段追踪 MT 正极,尽管很弱,但提供了 EB1+TIP 行为需要二聚化的观点的证据。

相似文献

1
Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo.
Cytoskeleton (Hoboken). 2010 Jan;67(1):1-12. doi: 10.1002/cm.20409.
2
Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends.
J Cell Biol. 2008 Feb 25;180(4):729-37. doi: 10.1083/jcb.200707203. Epub 2008 Feb 18.
3
Interactions between EB1 and microtubules: dramatic effect of affinity tags and evidence for cooperative behavior.
J Biol Chem. 2009 Nov 20;284(47):32651-61. doi: 10.1074/jbc.M109.013466. Epub 2009 Sep 23.
4
Microtubule plus-end tracking by CLIP-170 requires EB1.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):492-7. doi: 10.1073/pnas.0807614106. Epub 2009 Jan 6.
5
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex.
J Cell Biol. 2005 Jan 3;168(1):141-53. doi: 10.1083/jcb.200405094.
6
The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules.
Curr Biol. 2000 Jul 13;10(14):865-8. doi: 10.1016/s0960-9822(00)00600-x.
7
Probing interactions between CLIP-170, EB1, and microtubules.
J Mol Biol. 2010 Feb 5;395(5):1049-62. doi: 10.1016/j.jmb.2009.11.014. Epub 2009 Nov 11.
8
Eribulin disrupts EB1-microtubule plus-tip complex formation.
Cell Cycle. 2014;13(20):3218-21. doi: 10.4161/15384101.2014.950143.
9
Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane.
J Cell Sci. 2002 Apr 15;115(Pt 8):1583-90. doi: 10.1242/jcs.115.8.1583.
10
Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2.
J Biol Chem. 2017 May 5;292(18):7675-7687. doi: 10.1074/jbc.M116.759746. Epub 2017 Mar 20.

引用本文的文献

2
Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D.
PLoS Genet. 2023 Jul 10;19(7):e1010837. doi: 10.1371/journal.pgen.1010837. eCollection 2023 Jul.
5
On the Relationship Between EB-3 Profiles and Microtubules Growth in Cultured Cells.
Front Mol Biosci. 2021 Nov 8;8:745089. doi: 10.3389/fmolb.2021.745089. eCollection 2021.
6
chTOG is a conserved mitotic error correction factor.
Elife. 2020 Dec 30;9:e61773. doi: 10.7554/eLife.61773.
7
The proline-rich domain promotes Tau liquid-liquid phase separation in cells.
J Cell Biol. 2020 Nov 2;219(11). doi: 10.1083/jcb.202006054.
8
Identification of charged amino acids required for nuclear localization of human L1 ORF1 protein.
Mob DNA. 2019 May 6;10:20. doi: 10.1186/s13100-019-0159-2. eCollection 2019.
9
Local control of intracellular microtubule dynamics by EB1 photodissociation.
Nat Cell Biol. 2018 Mar;20(3):252-261. doi: 10.1038/s41556-017-0028-5. Epub 2018 Jan 29.

本文引用的文献

1
Methods for expressing and analyzing GFP-tubulin and GFP-microtubule-associated proteins.
Cold Spring Harb Protoc. 2010 Sep 1;2010(9):pdb.top85. doi: 10.1101/pdb.top85.
2
Mammalian end binding proteins control persistent microtubule growth.
J Cell Biol. 2009 Mar 9;184(5):691-706. doi: 10.1083/jcb.200807179. Epub 2009 Mar 2.
3
Microtubule plus-end tracking by CLIP-170 requires EB1.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):492-7. doi: 10.1073/pnas.0807614106. Epub 2009 Jan 6.
4
CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites.
J Cell Biol. 2008 Dec 29;183(7):1223-33. doi: 10.1083/jcb.200809190. Epub 2008 Dec 22.
5
Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics.
J Cell Sci. 2008 Jul 15;121(Pt 14):2372-81. doi: 10.1242/jcs.030221. Epub 2008 Jun 24.
6
Tracking the ends: a dynamic protein network controls the fate of microtubule tips.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):309-22. doi: 10.1038/nrm2369. Epub 2008 Mar 5.
8
Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1.
Mol Cell. 2007 Sep 21;27(6):976-91. doi: 10.1016/j.molcel.2007.07.023.
9
Structure-function relationship of CAP-Gly domains.
Nat Struct Mol Biol. 2007 Oct;14(10):959-67. doi: 10.1038/nsmb1291. Epub 2007 Sep 9.
10
Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.
Eukaryot Cell. 2007 Dec;6(12):2354-64. doi: 10.1128/EC.00128-07. Epub 2007 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验