Suppr超能文献

利用边界元微流体动力学研究蛋白质腔体内的流动停滞现象。

Stagnation of flow in protein cavities by boundary element microhydrodynamics.

作者信息

Aragon Sergio R, Hahn David K

机构信息

Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA.

出版信息

J Phys Chem B. 2009 Mar 5;113(9):2657-63. doi: 10.1021/jp807706q.

Abstract

In this work, we apply the boundary element method to describe the fluid velocity profiles in pockets in protein surfaces that are crucial to their function as enzymes. First, we study a simplified model, that of a dimpled sphere, in order to properly interpret the behavior in more complex surfaces such as proteins. In that case, we are able to observe the difference between an unphysical sharp edge for the dimple and a smooth edge. The sharp edge produces extra dissipation in the fluid, accounting for much more friction for all types of body motions. We were able to observe the direct correlation of the stagnation depth with the depth of the dimple in this simple case, allowing us to interpret this feature in a similar fashion for proteins. We have found that the fluid in the protein pockets translates with the body, irrespective of the direction body motion, for a distance comparable to the size of the pocket, and that such stagnation volumes are larger for motions parallel to the pocket axis. Outside of these pockets, the fluid velocity profile decays to that of the surrounding fluid far away from the protein (taken to be zero in our case, for convenience), as the Oseen tensor requires. We have also found that there is weak local motion of fluid inside of the pockets, with velocities about 1% of those of the body. This study suggests that there may be a role for the hydrodynamics of solvent inside of pockets for the transport of substrates to protein active sites. If solvent is effectively stagnant inside of a pocket, then transport must occur by diffusion near the pocket surface even if the fluid around the protein is stirred. The weak local motions inside of the pocket may also be relevant in this transport process, but these may be easily overwhelmed by any electrostatic interactions that are likely present at active sites.

摘要

在这项工作中,我们应用边界元法来描述蛋白质表面口袋状结构中的流体速度分布,这些口袋状结构对其作为酶的功能至关重要。首先,我们研究了一个简化模型,即带凹坑的球体模型,以便正确解释在诸如蛋白质等更复杂表面中的行为。在这种情况下,我们能够观察到凹坑的非物理尖锐边缘和光滑边缘之间的差异。尖锐边缘在流体中产生额外的耗散,对于所有类型的物体运动而言,这会导致更多的摩擦。在这个简单的案例中,我们能够观察到停滞深度与凹坑深度的直接相关性,这使我们能够以类似的方式解释蛋白质中的这一特征。我们发现,蛋白质口袋中的流体与物体一起平移,无论物体运动方向如何,平移距离与口袋大小相当,并且对于平行于口袋轴的运动,这种停滞体积更大。在这些口袋之外,正如奥森张量所要求的,流体速度分布会衰减到远离蛋白质的周围流体的速度分布(为方便起见,在我们的案例中设为零)。我们还发现口袋内部的流体存在微弱的局部运动,其速度约为物体速度的1%。这项研究表明,口袋内部溶剂的流体动力学可能在将底物运输到蛋白质活性位点方面发挥作用。如果口袋内部的溶剂实际上是停滞的,那么即使蛋白质周围的流体被搅拌,运输也必须通过口袋表面附近的扩散来进行。口袋内部微弱的局部运动在这个运输过程中可能也有关系,但这些运动可能很容易被活性位点可能存在的任何静电相互作用所掩盖。

相似文献

1
Stagnation of flow in protein cavities by boundary element microhydrodynamics.
J Phys Chem B. 2009 Mar 5;113(9):2657-63. doi: 10.1021/jp807706q.
2
Segmental motions of rat thymidylate synthase leading to half-the-sites behavior.
Biopolymers. 2010 Jun;93(6):549-59. doi: 10.1002/bip.21393.
4
The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3784-9. doi: 10.1073/pnas.1117768109. Epub 2012 Feb 21.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Extraction, quantification and visualization of protein pockets.
Comput Syst Bioinformatics Conf. 2007;6:275-86.
8
Protein Binding Pocket Dynamics.
Acc Chem Res. 2016 May 17;49(5):809-15. doi: 10.1021/acs.accounts.5b00516. Epub 2016 Apr 25.
9
Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.
J Mol Graph Model. 2015 Feb;55:13-24. doi: 10.1016/j.jmgm.2014.10.011. Epub 2014 Oct 25.
10
Depth dependent dynamics in the hydration shell of a protein.
J Chem Phys. 2010 Aug 28;133(8):085101. doi: 10.1063/1.3481089.

引用本文的文献

1
Recent advances in macromolecular hydrodynamic modeling.
Methods. 2011 May;54(1):101-14. doi: 10.1016/j.ymeth.2010.10.005. Epub 2010 Nov 10.

本文引用的文献

1
Intrinsic Viscosity of Proteins and Platonic Solids by Boundary Element Methods.
J Chem Theory Comput. 2006 Sep;2(5):1416-28. doi: 10.1021/ct600062y.
2
Precise boundary element computation of protein transport properties: Diffusion tensors, specific volume, and hydration.
Biophys J. 2006 Sep 1;91(5):1591-603. doi: 10.1529/biophysj.105.078188. Epub 2006 May 19.
3
A precise boundary element method for macromolecular transport properties.
J Comput Chem. 2004 Jul 15;25(9):1191-205. doi: 10.1002/jcc.20045.
4
Predicting protein diffusion coefficients.
Proc Natl Acad Sci U S A. 1993 May 1;90(9):3835-9. doi: 10.1073/pnas.90.9.3835.
5
The molecular surface package.
J Mol Graph. 1993 Jun;11(2):139-41. doi: 10.1016/0263-7855(93)87010-3.
6
Modeling the electrophoresis of rigid polyions: application to lysozyme.
Biophys J. 1995 Jun;68(6):2261-70. doi: 10.1016/S0006-3495(95)80408-X.
7
Solvent-accessible surfaces of proteins and nucleic acids.
Science. 1983 Aug 19;221(4612):709-13. doi: 10.1126/science.6879170.
8
On an exact starting expression for macromolecular hydrodynamic models.
Biopolymers. 1986 Apr;25(4):627-37. doi: 10.1002/bip.360250408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验