Suppr超能文献

大分子流体力学建模的最新进展。

Recent advances in macromolecular hydrodynamic modeling.

机构信息

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco 94132, USA.

出版信息

Methods. 2011 May;54(1):101-14. doi: 10.1016/j.ymeth.2010.10.005. Epub 2010 Nov 10.

Abstract

The modern implementation of the boundary element method [23] has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400kDa, have shown that a model using a 1.1Å thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (about -20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10ns duration. We have also studied a 150kDa flexible monoclonal IgG antibody, Trastuzumab, with multiple independent trajectories encompassing over 320ns of simulation. The close agreement within experimental error of the computed and measured properties allows us to conclude that MD does produce structures typical of those in solution, and that flexible molecules can be properly described using the method of ensemble averaging over a trajectory. We review similar work on the study of a transfer RNA molecule and DNA oligomers that demonstrate that within 3% a simple uniform hydration model 1.1Å thick provides agreement with experiment for these nucleic acids. In the case of linear oligomers, the precision can be improved close to 1% by a non-uniform hydration model that hydrates mainly in the DNA grooves, in agreement with high resolution X-ray diffraction. We conclude with a vista on planned improvements for the BEST program to decrease its memory requirements and increase its speed without sacrificing accuracy.

摘要

现代边界元法的实现[23]为解决具有粘性边界条件的流体动力学 Stokes 方程带来了前所未有的准确性。本文首先回顾了 BEST 程序对光滑表面物体(如椭球体、哑铃和圆柱体)的计算,这些计算表明,流体动力学积分方程的数值解可以产生非常高的精度和准确性。当 BEST 用于大分子计算时,限制因素变为分子水动力表面的定义以及隐含的分子表面有效溶剂化。对 49 种不同蛋白质的研究,分子量从 9 到 400kDa 以上,表明对于绝大多数蛋白质,使用 1.1Å 厚水合层的模型可以很好地描述所有蛋白质的输运性质。此外,这些数据表明,对于大多数蛋白质来说,晶体结构是其平均溶液结构的极好代表。为了研究少数几种多聚体蛋白质中存在的一些显著差异的原因(在固有粘度中观察到约-20%),已经将分子动力学模拟(MD)技术纳入了研究计划。本文初步研究了使用近似隐式水分子 MD 的二聚体α-糜蛋白酶。此外,我还描述了现代蛋白质力场 ff03 和 ff99SB 的成功验证,这些力场可通过比较轨迹集合平均计算的输运性质与实验测量值,准确计算在显式水分子模拟中的溶液结构。这项工作包括使用约 10ns 持续时间轨迹的小蛋白质,如溶菌酶、核糖核酸酶和泛素。我们还研究了一种 150kDa 的柔性单克隆 IgG 抗体曲妥珠单抗,该抗体有多个独立的轨迹,涵盖了超过 320ns 的模拟。在实验误差范围内,计算和测量的性质非常吻合,这使我们得出结论,MD 确实可以产生溶液中典型的结构,并且可以通过轨迹集合平均方法对柔性分子进行适当描述。我们还回顾了类似的关于转移 RNA 分子和 DNA 寡聚物的研究工作,这些工作表明,在 3%以内,简单的均匀水合模型 1.1Å 厚可以与实验结果相吻合。对于线性寡聚物,通过主要在 DNA 沟槽中进行水合的非均匀水合模型,可以将精度提高到接近 1%,这与高分辨率 X 射线衍射结果一致。最后,我们展望了 BEST 程序的计划改进,以降低其内存需求并提高其速度,而不会牺牲准确性。

相似文献

1
Recent advances in macromolecular hydrodynamic modeling.
Methods. 2011 May;54(1):101-14. doi: 10.1016/j.ymeth.2010.10.005. Epub 2010 Nov 10.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Hydrodynamic Modeling and Its Application in AUC.
Methods Enzymol. 2015;562:81-108. doi: 10.1016/bs.mie.2015.04.010. Epub 2015 Jul 9.
5
Precise boundary element computation of protein transport properties: Diffusion tensors, specific volume, and hydration.
Biophys J. 2006 Sep 1;91(5):1591-603. doi: 10.1529/biophysj.105.078188. Epub 2006 May 19.
10
Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods.
Methods. 2017 Apr 15;118-119:146-162. doi: 10.1016/j.ymeth.2016.12.002. Epub 2016 Dec 8.

引用本文的文献

1
Bead model hydrodynamics: an in-depth comparison between GRPY and ZENO.
Eur Biophys J. 2025 May 29. doi: 10.1007/s00249-025-01758-8.
2
Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode.
J Phys Chem B. 2022 Nov 3;126(43):8777-8790. doi: 10.1021/acs.jpcb.2c05371. Epub 2022 Oct 21.
3
Protein intrinsic viscosity determination with the Viscosizer TD instrument: reaching beyond the initially expected applications.
Eur Biophys J. 2021 May;50(3-4):587-595. doi: 10.1007/s00249-020-01492-3. Epub 2021 Jan 24.
4
Calibrating analytical ultracentrifuges.
Eur Biophys J. 2021 May;50(3-4):353-362. doi: 10.1007/s00249-020-01485-2. Epub 2021 Jan 4.
6
GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
Biophys J. 2018 Sep 4;115(5):782-800. doi: 10.1016/j.bpj.2018.07.015. Epub 2018 Jul 24.
7
A radial calibration window for analytical ultracentrifugation.
PLoS One. 2018 Jul 30;13(7):e0201529. doi: 10.1371/journal.pone.0201529. eCollection 2018.
8
Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield.
Biophys J. 2017 Apr 11;112(7):1374-1382. doi: 10.1016/j.bpj.2017.02.020.
9
3D-Printing for Analytical Ultracentrifugation.
PLoS One. 2016 Aug 15;11(8):e0155201. doi: 10.1371/journal.pone.0155201. eCollection 2016.
10
Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
Eur Biophys J. 2015 Sep;44(6):417-31. doi: 10.1007/s00249-015-1042-9. Epub 2015 Jun 12.

本文引用的文献

1
Intrinsic Viscosity of Proteins and Platonic Solids by Boundary Element Methods.
J Chem Theory Comput. 2006 Sep;2(5):1416-28. doi: 10.1021/ct600062y.
4
Stagnation of flow in protein cavities by boundary element microhydrodynamics.
J Phys Chem B. 2009 Mar 5;113(9):2657-63. doi: 10.1021/jp807706q.
5
Design of therapeutic proteins with enhanced stability.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11937-42. doi: 10.1073/pnas.0904191106. Epub 2009 Jul 1.
6
Aggregation-prone motifs in human immunoglobulin G.
J Mol Biol. 2009 Aug 14;391(2):404-13. doi: 10.1016/j.jmb.2009.06.028. Epub 2009 Jun 13.
7
Prediction of the rotational tumbling time for proteins with disordered segments.
J Am Chem Soc. 2009 May 20;131(19):6814-21. doi: 10.1021/ja809687r.
8
The Gouy diffusiometer; further calibration.
Proc R Soc Lond A Math Phys Sci. 1949 Mar 22;196(1045):272-85. doi: 10.1098/rspa.1949.0027.
9
Polarizability and Kerr constant of proteins by boundary element methods.
Colloids Surf B Biointerfaces. 2007 Apr 15;56(1-2):19-25. doi: 10.1016/j.colsurfb.2006.11.027. Epub 2006 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验