Suppr超能文献

用于比较和评估RNA三维结构与模型之间差异的新指标。

New metrics for comparing and assessing discrepancies between RNA 3D structures and models.

作者信息

Parisien Marc, Cruz José Almeida, Westhof Eric, Major François

机构信息

Institute for Research in Immunology and Cancer, Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, Canada.

出版信息

RNA. 2009 Oct;15(10):1875-85. doi: 10.1261/rna.1700409. Epub 2009 Aug 26.

Abstract

To benchmark progress made in RNA three-dimensional modeling and assess newly developed techniques, reliable and meaningful comparison metrics and associated tools are necessary. Generally, the average root-mean-square deviations (RMSDs) are quoted. However, RMSD can be misleading since errors are spread over the whole molecule and do not account for the specificity of RNA base interactions. Here, we introduce two new metrics that are particularly suitable to RNAs: the deformation index and deformation profile. The deformation index is calibrated by the interaction network fidelity, which considers base-base-stacking and base-base-pairing interactions within the target structure. The deformation profile highlights dissimilarities between structures at the nucleotide scale for both intradomain and interdomain interactions. Our results show that there is little correlation between RMSD and interaction network fidelity. The deformation profile is a tool that allows for rapid assessment of the origins of discrepancies.

摘要

为了衡量RNA三维建模所取得的进展并评估新开发的技术,可靠且有意义的比较指标及相关工具是必要的。一般来说,会引用平均均方根偏差(RMSD)。然而,RMSD可能会产生误导,因为误差分布在整个分子上,且没有考虑RNA碱基相互作用的特异性。在此,我们引入了两个特别适用于RNA的新指标:变形指数和变形轮廓。变形指数通过相互作用网络保真度进行校准,该保真度考虑了目标结构内的碱基堆积和碱基配对相互作用。变形轮廓突出了结构在核苷酸尺度上域内和域间相互作用的差异。我们的结果表明,RMSD与相互作用网络保真度之间几乎没有相关性。变形轮廓是一种能够快速评估差异来源的工具。

相似文献

1
New metrics for comparing and assessing discrepancies between RNA 3D structures and models.
RNA. 2009 Oct;15(10):1875-85. doi: 10.1261/rna.1700409. Epub 2009 Aug 26.
2
Quantitative analysis of nucleic acid three-dimensional structures.
J Mol Biol. 2001 May 18;308(5):919-36. doi: 10.1006/jmbi.2001.4626.
3
Molecular dynamics simulations of sarcin-ricin rRNA motif.
Nucleic Acids Res. 2006 Feb 2;34(2):697-708. doi: 10.1093/nar/gkj470. Print 2006.
4
The use of interatomic contact areas to quantify discrepancies between RNA 3D models and reference structures.
Nucleic Acids Res. 2014 May;42(9):5407-15. doi: 10.1093/nar/gku191. Epub 2014 Mar 12.
5
FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
J Math Biol. 2008 Jan;56(1-2):215-52. doi: 10.1007/s00285-007-0110-x. Epub 2007 Aug 11.
6
Assessment of comparative modeling in CASP2.
Proteins. 1997;Suppl 1:14-28. doi: 10.1002/(sici)1097-0134(1997)1+<14::aid-prot4>3.3.co;2-f.
7
The conformation of the sarcin/ricin loop from 28S ribosomal RNA.
Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9581-5. doi: 10.1073/pnas.90.20.9581.
8
Barnaba: software for analysis of nucleic acid structures and trajectories.
RNA. 2019 Feb;25(2):219-231. doi: 10.1261/rna.067678.118. Epub 2018 Nov 12.
9
Chemical secondary structure probing of two highly methylated regions in Xenopus laevis 28S ribosomal RNA.
Biochim Biophys Acta. 1994 Sep 13;1219(1):89-97. doi: 10.1016/0167-4781(94)90250-x.

引用本文的文献

1
Updates to the CASP Infrastructure in 2024.
Proteins. 2025 Sep 1. doi: 10.1002/prot.70042.
4
Structural Prediction of Coronavirus s2m Kissing Complexes and Extended Duplexes.
ACS Phys Chem Au. 2025 Jun 5;5(4):410-424. doi: 10.1021/acsphyschemau.5c00031. eCollection 2025 Jul 23.
5
Assessment of nucleic acid structure prediction in CASP16.
bioRxiv. 2025 May 10:2025.05.06.652459. doi: 10.1101/2025.05.06.652459.
6
RiNALMo: general-purpose RNA language models can generalize well on structure prediction tasks.
Nat Commun. 2025 Jul 1;16(1):5671. doi: 10.1038/s41467-025-60872-5.
7
Deep generalizable prediction of RNA secondary structure via base pair motif energy.
Nat Commun. 2025 Jul 1;16(1):5856. doi: 10.1038/s41467-025-60048-1.
8
RNA secondary structure prediction by conducting multi-class classifications.
Comput Struct Biotechnol J. 2025 Apr 4;27:1449-1459. doi: 10.1016/j.csbj.2025.04.001. eCollection 2025.
9
Assessing interface accuracy in macromolecular complexes.
PLoS One. 2025 Apr 2;20(4):e0319917. doi: 10.1371/journal.pone.0319917. eCollection 2025.
10
Unknotting RNA: A method to resolve computational artifacts.
PLoS Comput Biol. 2025 Mar 20;21(3):e1012843. doi: 10.1371/journal.pcbi.1012843. eCollection 2025 Mar.

本文引用的文献

1
Frequency and isostericity of RNA base pairs.
Nucleic Acids Res. 2009 Apr;37(7):2294-312. doi: 10.1093/nar/gkp011. Epub 2009 Feb 24.
3
Automated motif extraction and classification in RNA tertiary structures.
RNA. 2008 Dec;14(12):2489-97. doi: 10.1261/rna.1061108. Epub 2008 Oct 28.
4
Annotation of tertiary interactions in RNA structures reveals variations and correlations.
RNA. 2008 Dec;14(12):2465-77. doi: 10.1261/rna.1249208. Epub 2008 Oct 28.
5
Analysis and classification of RNA tertiary structures.
RNA. 2008 Nov;14(11):2274-89. doi: 10.1261/rna.853208. Epub 2008 Sep 29.
6
Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.
J Biomol NMR. 2008 Oct;42(2):99-109. doi: 10.1007/s10858-008-9267-x. Epub 2008 Sep 12.
7
Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms.
RNA. 2008 Jun;14(6):1164-73. doi: 10.1261/rna.894608. Epub 2008 May 2.
8
Progress and challenges in protein structure prediction.
Curr Opin Struct Biol. 2008 Jun;18(3):342-8. doi: 10.1016/j.sbi.2008.02.004. Epub 2008 Apr 22.
9
RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.
J Biomol Struct Dyn. 2008 Jun;25(6):669-83. doi: 10.1080/07391102.2008.10531240.
10
The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
Nature. 2008 Mar 6;452(7183):51-5. doi: 10.1038/nature06684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验