Suppr超能文献

用于比较和评估RNA三维结构与模型之间差异的新指标。

New metrics for comparing and assessing discrepancies between RNA 3D structures and models.

作者信息

Parisien Marc, Cruz José Almeida, Westhof Eric, Major François

机构信息

Institute for Research in Immunology and Cancer, Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, Canada.

出版信息

RNA. 2009 Oct;15(10):1875-85. doi: 10.1261/rna.1700409. Epub 2009 Aug 26.

Abstract

To benchmark progress made in RNA three-dimensional modeling and assess newly developed techniques, reliable and meaningful comparison metrics and associated tools are necessary. Generally, the average root-mean-square deviations (RMSDs) are quoted. However, RMSD can be misleading since errors are spread over the whole molecule and do not account for the specificity of RNA base interactions. Here, we introduce two new metrics that are particularly suitable to RNAs: the deformation index and deformation profile. The deformation index is calibrated by the interaction network fidelity, which considers base-base-stacking and base-base-pairing interactions within the target structure. The deformation profile highlights dissimilarities between structures at the nucleotide scale for both intradomain and interdomain interactions. Our results show that there is little correlation between RMSD and interaction network fidelity. The deformation profile is a tool that allows for rapid assessment of the origins of discrepancies.

摘要

为了衡量RNA三维建模所取得的进展并评估新开发的技术,可靠且有意义的比较指标及相关工具是必要的。一般来说,会引用平均均方根偏差(RMSD)。然而,RMSD可能会产生误导,因为误差分布在整个分子上,且没有考虑RNA碱基相互作用的特异性。在此,我们引入了两个特别适用于RNA的新指标:变形指数和变形轮廓。变形指数通过相互作用网络保真度进行校准,该保真度考虑了目标结构内的碱基堆积和碱基配对相互作用。变形轮廓突出了结构在核苷酸尺度上域内和域间相互作用的差异。我们的结果表明,RMSD与相互作用网络保真度之间几乎没有相关性。变形轮廓是一种能够快速评估差异来源的工具。

相似文献

3
Molecular dynamics simulations of sarcin-ricin rRNA motif.肌动蛋白-蓖麻毒素rRNA基序的分子动力学模拟
Nucleic Acids Res. 2006 Feb 2;34(2):697-708. doi: 10.1093/nar/gkj470. Print 2006.
6
Assessment of comparative modeling in CASP2.对CASP2中比较建模的评估。
Proteins. 1997;Suppl 1:14-28. doi: 10.1002/(sici)1097-0134(1997)1+<14::aid-prot4>3.3.co;2-f.

引用本文的文献

4
Structural Prediction of Coronavirus s2m Kissing Complexes and Extended Duplexes.冠状病毒s2m接吻复合体和延伸双链体的结构预测
ACS Phys Chem Au. 2025 Jun 5;5(4):410-424. doi: 10.1021/acsphyschemau.5c00031. eCollection 2025 Jul 23.
5
Assessment of nucleic acid structure prediction in CASP16.CASP16中核酸结构预测的评估
bioRxiv. 2025 May 10:2025.05.06.652459. doi: 10.1101/2025.05.06.652459.
8
RNA secondary structure prediction by conducting multi-class classifications.通过进行多类分类来预测RNA二级结构。
Comput Struct Biotechnol J. 2025 Apr 4;27:1449-1459. doi: 10.1016/j.csbj.2025.04.001. eCollection 2025.
9
Assessing interface accuracy in macromolecular complexes.评估大分子复合物中的界面准确性。
PLoS One. 2025 Apr 2;20(4):e0319917. doi: 10.1371/journal.pone.0319917. eCollection 2025.
10
Unknotting RNA: A method to resolve computational artifacts.解开RNA:一种解决计算假象的方法。
PLoS Comput Biol. 2025 Mar 20;21(3):e1012843. doi: 10.1371/journal.pcbi.1012843. eCollection 2025 Mar.

本文引用的文献

1
Frequency and isostericity of RNA base pairs.RNA碱基对的频率与等排性。
Nucleic Acids Res. 2009 Apr;37(7):2294-312. doi: 10.1093/nar/gkp011. Epub 2009 Feb 24.
5
Analysis and classification of RNA tertiary structures.RNA三级结构的分析与分类
RNA. 2008 Nov;14(11):2274-89. doi: 10.1261/rna.853208. Epub 2008 Sep 29.
8
Progress and challenges in protein structure prediction.蛋白质结构预测的进展与挑战
Curr Opin Struct Biol. 2008 Jun;18(3):342-8. doi: 10.1016/j.sbi.2008.02.004. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验