Suppr超能文献

基于知识势能和结构过滤器的大型RNA分子粗粒度建模。

Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters.

作者信息

Jonikas Magdalena A, Radmer Randall J, Laederach Alain, Das Rhiju, Pearlman Samuel, Herschlag Daniel, Altman Russ B

机构信息

Department of Bioengineering, Stanford University, California 94305, USA.

出版信息

RNA. 2009 Feb;15(2):189-99. doi: 10.1261/rna.1270809.

Abstract

Understanding the function of complex RNA molecules depends critically on understanding their structure. However, creating three-dimensional (3D) structural models of RNA remains a significant challenge. We present a protocol (the nucleic acid simulation tool [NAST]) for RNA modeling that uses an RNA-specific knowledge-based potential in a coarse-grained molecular dynamics engine to generate plausible 3D structures. We demonstrate NAST's capabilities by using only secondary structure and tertiary contact predictions to generate, cluster, and rank structures. Representative structures in the best ranking clusters averaged 8.0 +/- 0.3 A and 16.3 +/- 1.0 A RMSD for the yeast phenylalanine tRNA and the P4-P6 domain of the Tetrahymena thermophila group I intron, respectively. The coarse-grained resolution allows us to model large molecules such as the 158-residue P4-P6 or the 388-residue T. thermophila group I intron. One advantage of NAST is the ability to rank clusters of structurally similar decoys based on their compatibility with experimental data. We successfully used ideal small-angle X-ray scattering data and both ideal and experimental solvent accessibility data to select the best cluster of structures for both tRNA and P4-P6. Finally, we used NAST to build in missing loops in the crystal structures of the Azoarcus and Twort ribozymes, and to incorporate crystallographic data into the Michel-Westhof model of the T. thermophila group I intron, creating an integrated model of the entire molecule. Our software package is freely available at https://simtk.org/home/nast.

摘要

理解复杂RNA分子的功能关键取决于对其结构的了解。然而,构建RNA的三维(3D)结构模型仍然是一项重大挑战。我们提出了一种用于RNA建模的方案(核酸模拟工具[NAST]),该方案在粗粒度分子动力学引擎中使用基于RNA特定知识的势能来生成合理的3D结构。我们通过仅使用二级结构和三级接触预测来生成、聚类和排序结构,展示了NAST的能力。对于酵母苯丙氨酸tRNA和嗜热栖热菌I组内含子的P4 - P6结构域,最佳排序聚类中的代表性结构的均方根偏差(RMSD)分别平均为8.0±0.3 Å和16.3±1.0 Å。粗粒度分辨率使我们能够对诸如158个残基的P4 - P6或388个残基的嗜热栖热菌I组内含子等大分子进行建模。NAST的一个优点是能够根据结构相似的诱饵聚类与实验数据的兼容性对其进行排序。我们成功地使用了理想的小角X射线散射数据以及理想和实验溶剂可及性数据,为tRNA和P4 - P6选择了最佳的结构聚类。最后,我们使用NAST在偶氮弧菌和Twort核酶的晶体结构中构建缺失的环,并将晶体学数据纳入嗜热栖热菌I组内含子的Michel - Westhof模型,创建了整个分子的整合模型。我们的软件包可在https://simtk.org/home/nast免费获取。

相似文献

2
Predicting RNA structure by multiple template homology modeling.
Pac Symp Biocomput. 2010:216-27. doi: 10.1142/9789814295291_0024.
3
RNA structure determination using SAXS data.
J Phys Chem B. 2010 Aug 12;114(31):10039-48. doi: 10.1021/jp1057308.
4
Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints.
J Comput Chem. 2011 Jul 30;32(10):2232-44. doi: 10.1002/jcc.21806. Epub 2011 Apr 21.
5
Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs.
J Mol Biol. 2000 Jul 7;300(2):339-52. doi: 10.1006/jmbi.2000.3747.
6
Crystallization of ribozymes and small RNA motifs by a sparse matrix approach.
Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7829-33. doi: 10.1073/pnas.90.16.7829.
7
Metal-binding sites in the major groove of a large ribozyme domain.
Structure. 1996 Oct 15;4(10):1221-9. doi: 10.1016/s0969-2126(96)00129-3.
8
Hinge stiffness is a barrier to RNA folding.
J Mol Biol. 2008 Jun 13;379(4):859-70. doi: 10.1016/j.jmb.2008.04.013. Epub 2008 Apr 10.
9
Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA.
J Biol Chem. 2011 Jun 3;286(22):19872-9. doi: 10.1074/jbc.M111.235465. Epub 2011 Apr 8.

引用本文的文献

1
Has AlphaFold3 achieved success for RNA?
Acta Crystallogr D Struct Biol. 2025 Feb 1;81(Pt 2):49-62. doi: 10.1107/S2059798325000592. Epub 2025 Jan 27.
2
IsRNAcirc: 3D structure prediction of circular RNAs based on coarse-grained molecular dynamics simulation.
PLoS Comput Biol. 2024 Oct 28;20(10):e1012293. doi: 10.1371/journal.pcbi.1012293. eCollection 2024 Oct.
3
State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction.
NAR Genom Bioinform. 2024 May 14;6(2):lqae048. doi: 10.1093/nargab/lqae048. eCollection 2024 Jun.
4
RNA three-dimensional structure drives the sequence organization of potato spindle tuber viroid quasispecies.
PLoS Pathog. 2024 Apr 4;20(4):e1012142. doi: 10.1371/journal.ppat.1012142. eCollection 2024 Apr.
7
Machine learning in RNA structure prediction: Advances and challenges.
Biophys J. 2024 Sep 3;123(17):2647-2657. doi: 10.1016/j.bpj.2024.01.026. Epub 2024 Jan 30.
8
Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks.
Biophys J. 2024 Sep 3;123(17):2671-2681. doi: 10.1016/j.bpj.2023.10.011. Epub 2023 Oct 14.
9
When will RNA get its AlphaFold moment?
Nucleic Acids Res. 2023 Oct 13;51(18):9522-9532. doi: 10.1093/nar/gkad726.
10
Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology.
Methods Mol Biol. 2023;2709:51-64. doi: 10.1007/978-1-0716-3417-2_3.

本文引用的文献

1
YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.
J Chem Theory Comput. 2006 May 1;2(3):529-540. doi: 10.1021/ct050323r. Epub 2006 Mar 18.
2
Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms.
RNA. 2008 Jun;14(6):1164-73. doi: 10.1261/rna.894608. Epub 2008 May 2.
3
The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.
Nature. 2008 Mar 6;452(7183):51-5. doi: 10.1038/nature06684.
4
Automated de novo prediction of native-like RNA tertiary structures.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14664-9. doi: 10.1073/pnas.0703836104. Epub 2007 Aug 28.
5
Bridging the gap in RNA structure prediction.
Curr Opin Struct Biol. 2007 Apr;17(2):157-65. doi: 10.1016/j.sbi.2007.03.001. Epub 2007 Mar 23.
6
A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry.
J Am Chem Soc. 2007 Apr 11;129(14):4144-5. doi: 10.1021/ja0704028. Epub 2007 Mar 17.
7
CONTRAfold: RNA secondary structure prediction without physics-based models.
Bioinformatics. 2006 Jul 15;22(14):e90-8. doi: 10.1093/bioinformatics/btl246.
8
Determining the Mg2+ stoichiometry for folding an RNA metal ion core.
J Am Chem Soc. 2005 Jun 15;127(23):8272-3. doi: 10.1021/ja051422h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验