Jonikas Magdalena A, Radmer Randall J, Laederach Alain, Das Rhiju, Pearlman Samuel, Herschlag Daniel, Altman Russ B
Department of Bioengineering, Stanford University, California 94305, USA.
RNA. 2009 Feb;15(2):189-99. doi: 10.1261/rna.1270809.
Understanding the function of complex RNA molecules depends critically on understanding their structure. However, creating three-dimensional (3D) structural models of RNA remains a significant challenge. We present a protocol (the nucleic acid simulation tool [NAST]) for RNA modeling that uses an RNA-specific knowledge-based potential in a coarse-grained molecular dynamics engine to generate plausible 3D structures. We demonstrate NAST's capabilities by using only secondary structure and tertiary contact predictions to generate, cluster, and rank structures. Representative structures in the best ranking clusters averaged 8.0 +/- 0.3 A and 16.3 +/- 1.0 A RMSD for the yeast phenylalanine tRNA and the P4-P6 domain of the Tetrahymena thermophila group I intron, respectively. The coarse-grained resolution allows us to model large molecules such as the 158-residue P4-P6 or the 388-residue T. thermophila group I intron. One advantage of NAST is the ability to rank clusters of structurally similar decoys based on their compatibility with experimental data. We successfully used ideal small-angle X-ray scattering data and both ideal and experimental solvent accessibility data to select the best cluster of structures for both tRNA and P4-P6. Finally, we used NAST to build in missing loops in the crystal structures of the Azoarcus and Twort ribozymes, and to incorporate crystallographic data into the Michel-Westhof model of the T. thermophila group I intron, creating an integrated model of the entire molecule. Our software package is freely available at https://simtk.org/home/nast.
理解复杂RNA分子的功能关键取决于对其结构的了解。然而,构建RNA的三维(3D)结构模型仍然是一项重大挑战。我们提出了一种用于RNA建模的方案(核酸模拟工具[NAST]),该方案在粗粒度分子动力学引擎中使用基于RNA特定知识的势能来生成合理的3D结构。我们通过仅使用二级结构和三级接触预测来生成、聚类和排序结构,展示了NAST的能力。对于酵母苯丙氨酸tRNA和嗜热栖热菌I组内含子的P4 - P6结构域,最佳排序聚类中的代表性结构的均方根偏差(RMSD)分别平均为8.0±0.3 Å和16.3±1.0 Å。粗粒度分辨率使我们能够对诸如158个残基的P4 - P6或388个残基的嗜热栖热菌I组内含子等大分子进行建模。NAST的一个优点是能够根据结构相似的诱饵聚类与实验数据的兼容性对其进行排序。我们成功地使用了理想的小角X射线散射数据以及理想和实验溶剂可及性数据,为tRNA和P4 - P6选择了最佳的结构聚类。最后,我们使用NAST在偶氮弧菌和Twort核酶的晶体结构中构建缺失的环,并将晶体学数据纳入嗜热栖热菌I组内含子的Michel - Westhof模型,创建了整个分子的整合模型。我们的软件包可在https://simtk.org/home/nast免费获取。