David Yaron, Cacheaux Luisa P, Ivens Sebastian, Lapilover Ezequiel, Heinemann Uwe, Kaufer Daniela, Friedman Alon
Department of Physiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
J Neurosci. 2009 Aug 26;29(34):10588-99. doi: 10.1523/JNEUROSCI.2323-09.2009.
Focal epilepsy often develops following traumatic, ischemic, or infectious brain injury. While the electrical activity of the epileptic brain is well characterized, the mechanisms underlying epileptogenesis are poorly understood. We have recently shown that in the rat neocortex, long-lasting breakdown of the blood-brain barrier (BBB) or direct exposure of the neocortex to serum-derived albumin leads to rapid upregulation of the astrocytic marker GFAP (glial fibrillary acidic protein), followed by delayed (within 4-7 d) development of an epileptic focus. We investigated the role of astrocytes in epileptogenesis in the BBB-breakdown and albumin models of epileptogenesis. We found similar, robust changes in astrocytic gene expression in the neocortex within hours following treatment with deoxycholic acid (BBB breakdown) or albumin. These changes predict reduced clearance capacity for both extracellular glutamate and potassium. Electrophysiological recordings in vitro confirmed the reduced clearance of activity-dependent accumulation of both potassium and glutamate 24 h following exposure to albumin. We used a NEURON model to simulate the consequences of reduced astrocytic uptake of potassium and glutamate on EPSPs. The model predicted that the accumulation of glutamate is associated with frequency-dependent (>100 Hz) decreased facilitation of EPSPs, while potassium accumulation leads to frequency-dependent (10-50 Hz) and NMDA-dependent synaptic facilitation. In vitro electrophysiological recordings during epileptogenesis confirmed frequency-dependent synaptic facilitation leading to seizure-like activity. Our data indicate a transcription-mediated astrocytic transformation early during epileptogenesis. We suggest that the resulting reduction in the clearance of extracellular potassium underlies frequency-dependent neuronal hyperexcitability and network synchronization.
局灶性癫痫常继发于创伤性、缺血性或感染性脑损伤。虽然癫痫脑的电活动已得到充分表征,但癫痫发生的潜在机制仍知之甚少。我们最近发现,在大鼠新皮质中,血脑屏障(BBB)的长期破坏或新皮质直接暴露于血清来源的白蛋白会导致星形胶质细胞标志物GFAP(胶质纤维酸性蛋白)迅速上调,随后(在4 - 7天内)癫痫病灶延迟形成。我们研究了星形胶质细胞在BBB破坏和白蛋白癫痫发生模型中癫痫发生过程中的作用。我们发现,在用脱氧胆酸(BBB破坏)或白蛋白处理后的数小时内,新皮质中星形胶质细胞基因表达发生了类似的、强烈的变化。这些变化预示着细胞外谷氨酸和钾的清除能力降低。体外电生理记录证实,暴露于白蛋白24小时后,钾和谷氨酸依赖活动积累的清除减少。我们使用NEURON模型来模拟星形胶质细胞对钾和谷氨酸摄取减少对兴奋性突触后电位(EPSP)的影响。该模型预测,谷氨酸的积累与频率依赖性(>100 Hz)的EPSP促进作用降低有关,而钾的积累则导致频率依赖性(10 - 50 Hz)和N - 甲基 - D - 天冬氨酸(NMDA)依赖性突触促进作用。癫痫发生过程中的体外电生理记录证实了频率依赖性突触促进作用导致癫痫样活动。我们的数据表明,在癫痫发生早期存在转录介导的星形胶质细胞转化。我们认为,由此导致的细胞外钾清除减少是频率依赖性神经元过度兴奋和网络同步的基础。