Suppr超能文献

engrailed 阳性神经谱系的分支模式揭示了果蝇脑髓质中的神经节边界。

Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.

作者信息

Kumar Abhilasha, Fung S, Lichtneckert Robert, Reichert Heinrich, Hartenstein Volker

机构信息

Biozentrum, University of Basel, Basel, Switzerland.

出版信息

J Comp Neurol. 2009 Nov 1;517(1):87-104. doi: 10.1002/cne.22112.

Abstract

The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropil structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropils. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropil formed by these neurons is still unclear. In this study we used genetic labeling techniques to characterize the neuropil innervation pattern of engrailed-expressing brain lineages of known neuromeric origin. We show that the neurons of these lineages project to and form most arborizations, in particular all of their proximal branches, in the same brain neuropil compartments in embryonic, larval and adult stages. Moreover, we show that engrailed-positive neurons of differing neuromeric origin respect boundaries between neuromere-specific compartments in the brain. This is confirmed by an analysis of the arborization pattern of empty spiracles-expressing lineages. These findings indicate that arborizations of lineages deriving from different brain neuromeres innervate a nonoverlapping set of neuropil compartments. This supports a model for neuromere-specific brain neuropil, in which a given lineage forms its proximal arborizations predominantly in the compartments that correspond to its neuromere of origin.

摘要

果蝇大脑是一个高度复杂的结构,由数千个神经元组成,这些神经元在众多精心组织的神经纤维结构中相互连接,如蘑菇体、中央复合体、触角叶和其他特殊神经纤维。虽然已知昆虫大脑中的神经元以谱系特异性方式从一组定型的节段性组织神经母细胞衍生而来,但由这些神经元形成的神经纤维的发育起源和神经节组织仍不清楚。在本研究中,我们使用基因标记技术来表征已知神经节起源的表达 engrailed 的大脑谱系的神经纤维支配模式。我们表明,这些谱系的神经元在胚胎、幼虫和成虫阶段投射到相同的脑区神经纤维隔室并在其中形成大部分树突,特别是它们所有的近端分支。此外,我们表明,不同神经节起源的 engrailed 阳性神经元尊重脑中神经节特异性隔室之间的边界。对表达空气门的谱系的树突模式分析证实了这一点。这些发现表明,来自不同脑神经节的谱系的树突支配一组不重叠的神经纤维隔室。这支持了一种神经节特异性脑区神经纤维的模型,其中给定的谱系主要在与其起源神经节相对应的隔室中形成其近端树突。

相似文献

4
Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments.
J Comp Neurol. 2018 Jan 1;526(1):33-58. doi: 10.1002/cne.24316. Epub 2017 Sep 28.
5
Multiple lineages enable robust development of the neuropil-glia architecture in adult .
Development. 2020 Mar 11;147(5):dev184085. doi: 10.1242/dev.184085.
9
Clonal development and organization of the adult Drosophila central brain.
Curr Biol. 2013 Apr 22;23(8):633-43. doi: 10.1016/j.cub.2013.02.057. Epub 2013 Mar 28.
10

引用本文的文献

1
Conserved roles of engrailed: patterning tissues and specifying cell types.
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.204250. Epub 2024 Dec 13.
2
Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):679-720. doi: 10.1007/s00359-023-01616-y. Epub 2023 Mar 17.
3
A clinically-relevant residue of POLR1D is required for Drosophila development.
Dev Dyn. 2022 Nov;251(11):1780-1797. doi: 10.1002/dvdy.505. Epub 2022 Jun 16.
4
Cloning and mutagenetic modification of the firefly luciferase gene and its use for bioluminescence microscopy of expression during metamorphosis.
Biochem Biophys Rep. 2020 May 30;23:100771. doi: 10.1016/j.bbrep.2020.100771. eCollection 2020 Sep.
5
Engrailed 1 overexpression as a potential prognostic marker in Lower Grade Glioma.
PeerJ. 2019 Sep 16;7:e7414. doi: 10.7717/peerj.7414. eCollection 2019.
6
Lineage-specific determination of ring neuron circuitry in the central complex of .
Biol Open. 2019 Jul 22;8(7):bio045062. doi: 10.1242/bio.045062.
7
expansion of functionally integrated GABAergic interneurons by targeted increase in neural progenitors.
EMBO J. 2018 Jul 2;37(13). doi: 10.15252/embj.201798163. Epub 2018 May 4.
8
Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments.
J Comp Neurol. 2018 Jan 1;526(1):33-58. doi: 10.1002/cne.24316. Epub 2017 Sep 28.
10
Developmental analysis of the dopamine-containing neurons of the Drosophila brain.
J Comp Neurol. 2017 Feb 1;525(2):363-379. doi: 10.1002/cne.24069. Epub 2016 Jul 11.

本文引用的文献

1
Embryonic origin of the imaginal discs of the head of Drosophila melanogaster.
Rouxs Arch Dev Biol. 1993 Jan;203(1-2):60-73. doi: 10.1007/BF00539891.
2
Expression of somite segmentation genes in amphioxus: a clock without a wavefront?
Dev Genes Evol. 2008 Dec;218(11-12):599-611. doi: 10.1007/s00427-008-0257-5. Epub 2008 Oct 21.
3
Development of the Drosophila olfactory system.
Adv Exp Med Biol. 2008;628:82-101. doi: 10.1007/978-0-387-78261-4_6.
4
The development of the Drosophila larval brain.
Adv Exp Med Biol. 2008;628:1-31. doi: 10.1007/978-0-387-78261-4_1.
5
Tools for neuroanatomy and neurogenetics in Drosophila.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9715-20. doi: 10.1073/pnas.0803697105. Epub 2008 Jul 9.
6
Empty spiracles is required for the development of olfactory projection neuron circuitry in Drosophila.
Development. 2008 Aug;135(14):2415-24. doi: 10.1242/dev.022210. Epub 2008 Jun 11.
7
Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis.
Dev Genes Evol. 2008 May;218(5):237-51. doi: 10.1007/s00427-008-0217-0. Epub 2008 Apr 29.
8
Antennal motor system of the cockroach, Periplaneta americana.
Cell Tissue Res. 2008 Mar;331(3):751-62. doi: 10.1007/s00441-007-0545-9. Epub 2008 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验