Faculty of Life Sciences, University of Manchester, Manchester, UK.
Mol Brain. 2009 Aug 27;2:28. doi: 10.1186/1756-6606-2-28.
In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation.
Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT.
Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.
在哺乳动物中,视交叉上核(SCN)中细胞自主时钟的同步活动使该结构能够作为主生物钟发挥作用,协调生理和行为的日常节律。然而,代谢压力可以覆盖 SCN 控制的节律,以及时钟基因在许多脑区表达,包括那些与食欲和进食调节有关的脑区,这一观察结果对这种时钟的主导地位提出了挑战。最近开发的可以通过生物发光构建体(荧光素酶或 luc)报告时钟基因/蛋白活性的小鼠,使我们能够在体外追踪许多组织中的分子振荡。因此,我们确定了中脑基底部(MBH)内细胞和组织的时钟活动及其对代谢扰动的反应性,MBH 是最佳内部动态平衡调节的关键部位。
在这里,我们证明了 PER2::LUC 表达的内源性昼夜节律在弓状核(Arc)和背内侧核(DMH)的离散亚区中。解析到单细胞的节律彼此之间不能长期保持同步,导致细胞和组织水平的振荡衰减。互补的电生理学记录显示了 Arc 和 DMH 中神经元活动的节律。此外,还在第三脑室的室管膜层和正中隆起/结节部(ME/PT)中检测到 PER2::LUC 节律。高脂肪饮食对 MBH 中的分子振荡没有影响,而禁食导致 ME/PT 中的相位改变。
我们的研究结果首次提供了 SCN 以外任何完整组织中内源性时钟基因表达的昼夜节律的单细胞分辨率,揭示了额外 SCN 振荡器中组织水平阻尼的细胞基础,并证明了 ME/PT 中的振荡器对代谢变化有反应。