Department of Physiology and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
Channels (Austin). 2009 Sep-Oct;3(5):356-65. doi: 10.4161/chan.3.5.9697. Epub 2009 Sep 3.
The nature and magnitude of voltage sensor conformational changes during ion channel activation are controversial. We have analyzed the topology of the K(V)AP voltage sensor domain in the absence and presence of a hyperpolarized voltage using native, right-side out membrane vesicles from E. coli. This approach does not disrupt the normal membrane environment of the channel protein and does not involve detergent solubilization. We found that voltage-dependent conformational changes are focused in the N-terminal half of the K(V)AP S4 segment, in excellent agreement with results obtained with Shaker. Homologous residues in the K(V)AP and Shaker S4 segments are transferred from the extracellular to the intracellular compartment upon hyperpolarization. Taken together with X-ray structures indicating that the K(V)AP S4 segment is outwardly displaced at 0 mV compared to S4 in a mammalian Shaker channel, our results are consistent with the idea that S4 moves further during voltage-dependent activation in K(V)AP than in Shaker.
在离子通道激活过程中,电压传感器构象变化的性质和幅度存在争议。我们使用来自大肠杆菌的天然、外翻膜泡分析了 K(V)AP 电压传感器结构域在去极化和超极化状态下的拓扑结构。这种方法不会破坏通道蛋白的正常膜环境,也不涉及去污剂溶解。我们发现,电压依赖性构象变化集中在 K(V)AP S4 片段的 N 端半部分,这与 Shaker 的结果非常吻合。K(V)AP 和 Shaker S4 片段中的同源残基在超极化时从细胞外转移到细胞内腔。与 X 射线结构表明与哺乳动物 Shaker 通道中的 S4 片段相比,K(V)AP 的 S4 片段在 0 mV 时向外位移的结果结合在一起,我们的结果与这样的观点一致,即在 K(V)AP 中,S4 在电压依赖性激活过程中的移动比在 Shaker 中更远。