Suppr超能文献

蛋白质结构预测技术关键评估第12轮(CASP12)中的接触预测评估:协同进化与深度学习走向成熟。

Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.

作者信息

Schaarschmidt Joerg, Monastyrskyy Bohdan, Kryshtafovych Andriy, Bonvin Alexandre M J J

机构信息

Faculty of Science - Chemistry, Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.

Genome Center, University of California, Davis, California.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):51-66. doi: 10.1002/prot.25407. Epub 2017 Nov 7.

Abstract

Following up on the encouraging results of residue-residue contact prediction in the CASP11 experiment, we present the analysis of predictions submitted for CASP12. The submissions include predictions of 34 groups for 38 domains classified as free modeling targets which are not accessible to homology-based modeling due to a lack of structural templates. CASP11 saw a rise of coevolution-based methods outperforming other approaches. The improvement of these methods coupled to machine learning and sequence database growth are most likely the main driver for a significant improvement in average precision from 27% in CASP11 to 47% in CASP12. In more than half of the targets, especially those with many homologous sequences accessible, precisions above 90% were achieved with the best predictors reaching a precision of 100% in some cases. We furthermore tested the impact of using these contacts as restraints in ab initio modeling of 14 single-domain free modeling targets using Rosetta. Adding contacts to the Rosetta calculations resulted in improvements of up to 26% in GDT_TS within the top five structures.

摘要

基于CASP11实验中残基-残基接触预测的令人鼓舞的结果,我们展示了对提交给CASP12的预测结果的分析。提交的预测结果包括对38个被归类为自由建模目标的结构域的34个组的预测,这些结构域由于缺乏结构模板而无法通过基于同源性的建模获得。在CASP11中,基于协同进化的方法表现优于其他方法。这些方法与机器学习以及序列数据库增长相结合,很可能是平均精度从CASP11中的27%显著提高到CASP12中的47%的主要驱动力。在超过一半的目标中,特别是那些有许多可获取的同源序列的目标,最佳预测器的精度达到了90%以上,在某些情况下甚至达到了100%。我们还测试了在使用Rosetta对14个单结构域自由建模目标进行从头建模时,将这些接触作为约束条件的影响。在Rosetta计算中添加接触信息后,在前五个结构中,GDT_TS最多提高了26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3430/5836953/0695ba35fad6/PROT-86-51-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验