Suppr超能文献

开发一种 NMR 化学位移预测应用程序,其准确性足以对质子 NMR 谱进行鉴定分级。

The development of an NMR chemical shift prediction application with the accuracy necessary to grade proton NMR spectra for identity.

机构信息

Structural Chemistry Department, Abbott Laboratories, Abbott Park, IL 60048-6114, USA.

出版信息

Magn Reson Chem. 2009 Dec;47(12):1055-61. doi: 10.1002/mrc.2512.

Abstract

We have developed an NMR chemical shift prediction system that enables high throughput automatic grading of NMR spectra. In support of high throughput synthetic efforts for our drug discovery program, a rapid and accurate analysis for identity was needed. The system was designed and implemented to take advantage of the NMR assignments that had been tabulated on internally generated research compounds. The system has been operational for four years and has been used in conjunction with an internally written grading program to successfully analyze several hundred thousand samples based only on their 1D 1H spectrum. A focused test of the system's accuracy on 1006 molecules demonstrated the ability to estimate the proton chemical shift with an average error of +/-0.16 ppm. This level of chemical shift accuracy allows for reliable structure confirmation by automated analysis using only proton NMR.

摘要

我们开发了一种 NMR 化学位移预测系统,能够实现高通量自动 NMR 谱分级。为了支持我们药物发现计划的高通量合成工作,需要一种快速、准确的身份分析方法。该系统旨在利用已在内部生成的研究化合物上列出的 NMR 分配进行设计和实现。该系统已经运行了四年,并与内部编写的分级程序一起成功地仅根据其 1D 1H 谱分析了数十万种样品。对该系统在 1006 个分子上的准确性进行了重点测试,结果表明能够以平均误差 +/-0.16 ppm 估计质子化学位移。这种化学位移精度水平允许仅使用质子 NMR 通过自动分析进行可靠的结构确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验