Suppr超能文献

在脑桥背外侧和延髓内侧微量注射胆碱能和谷氨酸能激动剂所产生的心血管和肌张力变化。

Cardiovascular and muscle tone changes produced by microinjection of cholinergic and glutamatergic agonists in dorsolateral pons and medial medulla.

作者信息

Lai Y Y, Siegel J M

机构信息

Sepulveda VAMC, CA 91343.

出版信息

Brain Res. 1990 Apr 23;514(1):27-36. doi: 10.1016/0006-8993(90)90432-b.

Abstract

Cardiovascular and muscle responses to L-glutamic acid (Glut) and cholinergic agonists injected into the dorsolateral pontine tegmentum and medial medullary reticular formation (MMRF) were examined in unanesthetized, decerebrated cats. Glut, or cholinergic agonists acetylcholine (ACh) or carbachol (Carb), were injected into pons and MMRF at sites from which electrical stimulation produced bilateral suppression of muscle tone. Glut injection in MMRF produced hypotension without change in heart rate at doses as low as 1 mM. At higher doses (0.1-0.4 M), Glut induced hypotension with bradycardia in 23 out of 40 injections in both pons and MMRF. High concentrations of microinjected Glut decreased muscle tone or produced complete atonia in pons and rostral MMRF. Both N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor blockers attenuated or completely blocked the cardiovascular response, while only non-NMDA antagonists blocked muscle inhibition to Glut injection. Microinjection of cholinergic agonists produced consistent hypotension in all of the injections in pons and MMRF, however, the heart rate response was variable with increase (27/42), decrease (2/42), or no change (13/42) in rate seen. Cholinergic injection produced muscle atonia in pons and caudal MMRF but not in rostral MMRF. Both muscle and cardiovascular responses were blocked by atropine but not by hexamethonium. The time course of muscle atonia and cardiovascular change differed in most of the experiments. We conclude that muscle tone suppression and cardiovascular response to Glut or cholinergic agonists use different receptor mechanisms and possibly different neurons. However, the co-localization of these mechanisms suggests that neuronal networks in the medial medulla and dorsolateral pons coordinate motor and cardiovascular responses.

摘要

在未麻醉、去大脑的猫中,研究了心血管和肌肉对注射到背外侧脑桥被盖和延髓内侧网状结构(MMRF)中的L-谷氨酸(Glut)和胆碱能激动剂的反应。将Glut或胆碱能激动剂乙酰胆碱(ACh)或卡巴胆碱(Carb)注射到脑桥和MMRF中,这些部位的电刺激可产生双侧肌张力抑制。在MMRF中注射低至1 mM剂量的Glut会导致低血压,心率无变化。在较高剂量(0.1 - 0.4 M)时,在脑桥和MMRF的40次注射中,有23次Glut诱导了低血压并伴有心动过缓。高浓度微量注射的Glut会降低脑桥和延髓上部MMRF的肌张力或导致完全性肌弛缓。N-甲基-D-天冬氨酸(NMDA)和非NMDA受体阻滞剂均减弱或完全阻断了心血管反应,而只有非NMDA拮抗剂阻断了对Glut注射的肌肉抑制作用。微量注射胆碱能激动剂在脑桥和MMRF的所有注射中均产生持续的低血压,然而,心率反应各不相同,心率增加(27/42)、降低(2/42)或无变化(13/42)。胆碱能注射在脑桥和延髓下部MMRF中导致肌肉弛缓,但在延髓上部MMRF中未出现。肌肉和心血管反应均被阿托品阻断,但未被六甲铵阻断。在大多数实验中,肌肉弛缓和心血管变化的时间进程不同。我们得出结论,对Glut或胆碱能激动剂的肌张力抑制和心血管反应使用不同的受体机制,可能涉及不同的神经元。然而,这些机制的共定位表明,延髓内侧和背外侧脑桥中的神经网络协调运动和心血管反应。

相似文献

2
Corticotropin-releasing factor mediated muscle atonia in pons and medulla.
Brain Res. 1992 Mar 13;575(1):63-8. doi: 10.1016/0006-8993(92)90423-7.
3
Medullary regions mediating atonia.
J Neurosci. 1988 Dec;8(12):4790-6. doi: 10.1523/JNEUROSCI.08-12-04790.1988.
4
Atonia-related regions in the rodent pons and medulla.
J Neurophysiol. 2000 Oct;84(4):1942-8. doi: 10.1152/jn.2000.84.4.1942.
5
Involvement of non-NMDA and NMDA receptors in glutamate-induced pressor or depressor responses of the pons and medulla.
Clin Exp Pharmacol Physiol. 1997 Jan;24(1):46-56. doi: 10.1111/j.1440-1681.1997.tb01782.x.
10
Locus coeruleus and dorsal pontine reticular influences on the gain of vestibulospinal reflexes.
Prog Brain Res. 1991;88:435-62. doi: 10.1016/s0079-6123(08)63827-3.

引用本文的文献

1
A Review of Sleep and Its Disorders in Patients with Parkinson's Disease in Relation to Various Brain Structures.
Front Aging Neurosci. 2016 May 23;8:114. doi: 10.3389/fnagi.2016.00114. eCollection 2016.
2
Movement- and behavioral state-dependent activity of pontine reticulospinal neurons.
Neuroscience. 2012 Sep 27;221:125-39. doi: 10.1016/j.neuroscience.2012.06.069. Epub 2012 Jul 13.
3
Brainstem mechanisms of paradoxical (REM) sleep generation.
Pflugers Arch. 2012 Jan;463(1):43-52. doi: 10.1007/s00424-011-1054-y. Epub 2011 Nov 15.
4
REM sleep: a biological and psychological paradox.
Sleep Med Rev. 2011 Jun;15(3):139-42. doi: 10.1016/j.smrv.2011.01.001. Epub 2011 Apr 8.
5
The neurobiology of sleep.
Semin Neurol. 2009 Sep;29(4):277-96. doi: 10.1055/s-0029-1237118. Epub 2009 Sep 9.
7
Unearthing the phylogenetic roots of sleep.
Curr Biol. 2008 Aug 5;18(15):R670-R679. doi: 10.1016/j.cub.2008.06.033.
8
Arousal of cerebral cortex electroencephalogram consequent to high-frequency stimulation of ventral medullary reticular formation.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18292-6. doi: 10.1073/pnas.0708620104. Epub 2007 Nov 5.

本文引用的文献

1
Tonic and reflex functions of medullary sympathetic cardiovascular centers.
J Neurophysiol. 1946 May;9:205-17. doi: 10.1152/jn.1946.9.3.205.
2
An inhibitory mechanism in the bulbar reticular formation.
J Neurophysiol. 1946 May;9:165-71. doi: 10.1152/jn.1946.9.3.165.
3
Localization of central cardiovascular control mechanism in lower brain stem of the cat.
Am J Physiol. 1962 Jan;202:25-30. doi: 10.1152/ajplegacy.1962.202.1.25.
4
The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat.
J Comp Neurol. 1961 Feb;116:27-69. doi: 10.1002/cne.901160104.
5
The relationship of the vasomotor and respiratory regions in the medulla oblongata of the sheep.
J Physiol. 1954 Oct 28;126(1):86-95. doi: 10.1113/jphysiol.1954.sp005194.
7
Centrally induced vasopressor and sympathetic nerve responses to carbachol in rats.
Jpn Circ J. 1984 Feb;48(2):144-9. doi: 10.1253/jcj.48.144.
9
Role of acetylcholine in central vasomotor regulation.
Can J Physiol Pharmacol. 1967 May;45(3):503-7. doi: 10.1139/y67-059.
10
Supraspinal control of reflex activity in renal nerves.
J Physiol. 1969 May;202(1):161-70. doi: 10.1113/jphysiol.1969.sp008801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验