Suppr超能文献

通过纳米压痕法测定现代方解石壳(Mergerlia truncata)和磷酸盐壳腕足动物(Discradisca stella 和 Lingula anatina)的力学性能。

Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation.

机构信息

Department für Geo- und Umweltwissenschaften and GeoBioCenter, LMU Munich, Germany.

出版信息

J Struct Biol. 2009 Dec;168(3):396-408. doi: 10.1016/j.jsb.2009.08.014. Epub 2009 Sep 1.

Abstract

We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from (H=0.25 GPa, E=2.5 GPa) to (H=2.5 GPa, E=50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.

摘要

我们通过纳米压痕法测量了 Rhynchonelliform 腕足动物 Mergerlia truncata 和 Linguliform 腕足动物 Discradisca stella 和 Lingula anatina 壳的硬度和弹性模量分布模式。 Rhynchonelliformea 产生方解石壳,而 Linguliformea 产生几丁质磷灰石壳。 M. truncata 方解石壳的背侧和腹侧瓣、铰合线和铰合,具有不同的纳米硬度值(2.3 至 4.6 GPa)和弹性模量(52 至 76 GPa)。生物方解石的硬度总是高于无机方解石。我们将这些影响归因于不同数量的晶内和晶间有机基质。与阀瓣曲率半径平行的剖面穿过不同的壳层材料层,令人惊讶地显示出相当均匀的纳米硬度和弹性模量值。对几丁质磷灰石腕足动物 D. stella 和 L. anatina 的纳米压痕测试反映了由具有不同程度矿化的层组成的层次结构。由于生物聚合物纳米纤维与 Ca-磷灰石纳米颗粒的两相复合材料,纳米硬度和弹性模量几乎呈线性相关(H=0.25 GPa,E=2.5 GPa)至(H=2.5 GPa,E=50 GPa)。矿物提供刚度和硬度,生物聚合物提供柔韧性;复合材料提供断裂韧性。矿化程度的梯度降低了硬矿化和软非矿化层之间界面处的潜在应力集中。对于底栖几丁质磷灰石 D. stella,层理也存在,但不如埋栖 L. anatina 明显,并且横截面轮廓中的材料强度分布在中心处达到最大值,并向壳内和壳外边缘减小(弹性模量从 30 到 12 GPa,硬度从 1.7 到 0.5 GPa)。因此,两种底栖形式,方解石 M. truncata 和几丁质磷灰石 D. stella 显示出其壳材料相当大的(均匀)纳米力学性能,而挖掘埋栖的 L. anatina 则明显分层。为壳提供强度的强烈矿化层也是易碎的,但使它们尽可能薄,可以允许一些弯曲灵活性。这种灵活性对于底栖生活方式来说不是必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验