Suppr超能文献

通过水合诱导的结构变化实现腕足动物贝壳的机械适应性。

Mechanical adaptation of brachiopod shells via hydration-induced structural changes.

机构信息

Photon Science Division, Paul Scherrer Institut, Villigen PSI, Switzerland.

Department of Chemistry, Faculty of Biology, Chemistry & Earth Sciences, University of Bayreuth, and Bavarian Polymer Institute, Universitaetsstrasse 30, Bayreuth, Germany.

出版信息

Nat Commun. 2021 Sep 10;12(1):5383. doi: 10.1038/s41467-021-25613-4.

Abstract

The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration.

摘要

生物矿物的功能优化特性源于基本构建块的层次结构组织。对环境胁迫的特性的改变通常涉及在基础有机支架中对矿物质进行再吸收和再沉淀的时间密集型过程。在这里,我们报告称,腕足动物 Discinisca tenuis 的承重壳就是该过程的一个例外。这些贝壳可以在几分钟内从干燥时的坚硬和僵硬状态动态调节其机械性能,变为可塑状态,以响应环境的变化。使用相衬 X 射线断层扫描、电子显微镜和光谱学,我们描述了它们的分层结构和组成作为水合作用的函数,以了解产生这种适应性的结构模式。关键是一组互补的结构修饰,从微米级别的有机基质的膨胀开始,通过纳米晶体重组,最后在分子水平上进行插层过程,以响应水合作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验