Suppr超能文献

乳腺癌的新分子分类

New molecular classifications of breast cancer.

作者信息

Cianfrocca Mary, Gradishar William

机构信息

Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.

出版信息

CA Cancer J Clin. 2009 Sep-Oct;59(5):303-13. doi: 10.3322/caac.20029.

Abstract

Traditionally, pathologic determinations of tumor size, lymph node status, endocrine receptor status, and human epidermal growth factor receptor 2 (HER2) status have driven prognostic predictions and adjuvant therapy recommendations for patients with early stage breast cancer. However, these prognostic and predictive factors are relatively crude measures, resulting in many patients being overtreated or undertreated. As a result of gene expression assays, there is growing recognition that breast cancer is a molecularly heterogeneous disease. Evidence from gene expression microarrays suggests the presence of multiple molecular subtypes of breast cancer. The recent commercial availability of gene expression profiling techniques that predict risk of disease recurrence as well as potential chemotherapy benefit have shown promise in refining clinical decision making. These techniques will be reviewed in this article.

摘要

传统上,肿瘤大小、淋巴结状态、内分泌受体状态以及人表皮生长因子受体2(HER2)状态的病理判定一直主导着早期乳腺癌患者的预后预测和辅助治疗建议。然而,这些预后和预测因素是相对粗略的指标,导致许多患者接受过度治疗或治疗不足。由于基因表达分析,人们越来越认识到乳腺癌是一种分子异质性疾病。基因表达微阵列的证据表明存在多种乳腺癌分子亚型。最近可商购的能够预测疾病复发风险以及潜在化疗获益的基因表达谱技术,在优化临床决策方面显示出了前景。本文将对这些技术进行综述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验