Suppr超能文献

基于群体智能的小波系数特征选择用于质谱分类:在蛋白质组学数据中的应用

Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data.

作者信息

Zhao Weixiang, Davis Cristina E

机构信息

Department of Mechanical and Aeronautical Engineering, One Shields Avenue, University of California, Davis, CA 95616, United States.

出版信息

Anal Chim Acta. 2009 Sep 28;651(1):15-23. doi: 10.1016/j.aca.2009.08.008. Epub 2009 Aug 15.

Abstract

This paper introduces the ant colony algorithm, a novel swarm intelligence based optimization method, to select appropriate wavelet coefficients from mass spectral data as a new feature selection method for ovarian cancer diagnostics. By determining the proper parameters for the ant colony algorithm (ACA) based searching algorithm, we perform the feature searching process for 100 times with the number of selected features fixed at 5. The results of this study show: (1) the classification accuracy based on the five selected wavelet coefficients can reach up to 100% for all the training, validating and independent testing sets; (2) the eight most popular selected wavelet coefficients of the 100 runs can provide 100% accuracy for the training set, 100% accuracy for the validating set, and 98.8% accuracy for the independent testing set, which suggests the robustness and accuracy of the proposed feature selection method; and (3) the mass spectral data corresponding to the eight popular wavelet coefficients can be located by reverse wavelet transformation and these located mass spectral data still maintain high classification accuracies (100% for the training set, 97.6% for the validating set, and 98.8% for the testing set) and also provide sufficient physical and medical meaning for future ovarian cancer mechanism studies. Furthermore, the corresponding mass spectral data (potential biomarkers) are in good agreement with other studies which have used the same sample set. Together these results suggest this feature extraction strategy will benefit the development of intelligent and real-time spectroscopy instrumentation based diagnosis and monitoring systems.

摘要

本文介绍了蚁群算法,一种基于群体智能的新型优化方法,用于从质谱数据中选择合适的小波系数,作为卵巢癌诊断的一种新的特征选择方法。通过为基于蚁群算法(ACA)的搜索算法确定合适的参数,我们在选定特征数量固定为5的情况下进行了100次特征搜索过程。本研究结果表明:(1)基于所选五个小波系数的分类准确率在所有训练集、验证集和独立测试集上均可达到100%;(2)100次运行中最常被选中的八个小波系数在训练集上的准确率为100%,验证集上为100%,独立测试集上为98.8%,这表明所提出的特征选择方法具有鲁棒性和准确性;(3)通过小波逆变换可以定位与这八个常用小波系数对应的质谱数据,这些定位后的质谱数据仍保持较高的分类准确率(训练集为100%,验证集为97.6%,测试集为98.8%),并且为未来卵巢癌机制研究提供了充分的物理和医学意义。此外,相应的质谱数据(潜在生物标志物)与其他使用相同样本集的研究结果高度一致。这些结果共同表明,这种特征提取策略将有助于基于智能实时光谱仪器的诊断和监测系统的发展。

相似文献

3
Feature extraction and dimensionality reduction for mass spectrometry data.质谱数据的特征提取与降维
Comput Biol Med. 2009 Sep;39(9):818-23. doi: 10.1016/j.compbiomed.2009.06.012. Epub 2009 Jul 30.
4
Mass spectrometry cancer data classification using wavelets and genetic algorithm.使用小波和遗传算法的质谱癌症数据分类
FEBS Lett. 2015 Dec 21;589(24 Pt B):3879-86. doi: 10.1016/j.febslet.2015.11.019. Epub 2015 Nov 30.

本文引用的文献

4
Cancer informatics by prototype networks in mass spectrometry.基于质谱原型网络的癌症信息学
Artif Intell Med. 2009 Feb-Mar;45(2-3):215-28. doi: 10.1016/j.artmed.2008.07.018. Epub 2008 Sep 7.
7
Ant system: optimization by a colony of cooperating agents.蚁群算法:通过一群协作智能体进行优化。
IEEE Trans Syst Man Cybern B Cybern. 1996;26(1):29-41. doi: 10.1109/3477.484436.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验