Suppr超能文献

从具有有序结果的质谱数据中识别生物标志物。

Identifying biomarkers from mass spectrometry data with ordinal outcome.

作者信息

Kwon Deukwoo, Tadesse Mahlet G, Sha Naijun, Pfeiffer Ruth M, Vannucci Marina

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

出版信息

Cancer Inform. 2007 Feb 5;3:19-28.

Abstract

In recent years, there has been an increased interest in using protein mass spectroscopy to identify molecular markers that discriminate diseased from healthy individuals. Existing methods are tailored towards classifying observations into nominal categories. Sometimes, however, the outcome of interest may be measured on an ordered scale. Ignoring this natural ordering results in some loss of information. In this paper, we propose a Bayesian model for the analysis of mass spectrometry data with ordered outcome. The method provides a unified approach for identifying relevant markers and predicting class membership. This is accomplished by building a stochastic search variable selection method within an ordinal outcome model. We apply the methodology to mass spectrometry data on ovarian cancer cases and healthy individuals. We also utilize wavelet-based techniques to remove noise from the mass spectra prior to analysis. We identify protein markers associated with being healthy, having low grade ovarian cancer, or being a high grade case. For comparison, we repeated the analysis using conventional classification procedures and found improved predictive accuracy with our method.

摘要

近年来,人们对使用蛋白质质谱法来识别区分患病个体与健康个体的分子标志物越来越感兴趣。现有方法是为将观测值分类到名义类别而量身定制的。然而,有时感兴趣的结果可能是在有序尺度上进行测量的。忽略这种自然顺序会导致一些信息损失。在本文中,我们提出了一种用于分析具有有序结果的质谱数据的贝叶斯模型。该方法为识别相关标志物和预测类别归属提供了一种统一的方法。这是通过在序数结果模型中构建一种随机搜索变量选择方法来实现的。我们将该方法应用于卵巢癌病例和健康个体的质谱数据。我们还利用基于小波的技术在分析之前去除质谱图中的噪声。我们识别出与健康、患有低级别卵巢癌或高级别病例相关的蛋白质标志物。为了进行比较,我们使用传统分类程序重复了分析,结果发现我们的方法具有更高的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a7b/2675849/a08e7bd12279/CIN-03-19-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验