Potamitis Ilyas, Ganchev Todor, Kontodimas Dimitris
Department of Music Technology and Acoustics, Technological Educational Institute of Crete, Daskalaki-Perivolia, 74100 Rethymno, Greece.
J Econ Entomol. 2009 Aug;102(4):1681-90. doi: 10.1603/029.102.0436.
The present work reports research efforts toward development and evaluation of a unified framework for automatic bioacoustic recognition of specific insect pests. Our approach is based on capturing and automatically recognizing the acoustic emission resulting from typical behaviors, e.g., locomotion and feeding, of the target pests. After acquisition the signals are amplified, filtered, parameterized, and classified by advanced machine learning methods on a portable computer. Specifically, we investigate an advanced signal parameterization scheme that relies on variable size signal segmentation. The feature vector computed for each segment of the signal is composed of the dominant harmonic, which carry information about the periodicity of the signal, and the cepstral coefficients, which carry information about the relative distribution of energy among the different spectral sub-bands. This parameterization offers a reliable representation of both the acoustic emissions of the pests of interest and the interferences from the environment. We illustrate the practical significance of our methodology on two specific cases: 1) a devastating pest for palm plantations, namely, Rhynchophorus ferrugineus Olivier and 2) a pest that attacks warehouse stored rice (Oryza sativa L.), the rice weevil, Sitophilus oryzae (L.) (both Coleoptera: Curculionidae, Dryophorinae). These pests are known in many countries around the world and contribute for significant economical loss. The proposed approach led to detection results in real field trials, reaching 99.1% on real-field recordings of R. ferrugineus and 100% for S. oryzae.
本研究报告了为开发和评估用于特定害虫自动生物声学识别的统一框架所做的研究工作。我们的方法基于捕捉并自动识别目标害虫典型行为(如移动和进食)产生的声发射。采集到的信号在便携式计算机上经过放大、滤波、参数化,并通过先进的机器学习方法进行分类。具体而言,我们研究了一种基于可变大小信号分割的先进信号参数化方案。为信号的每个片段计算的特征向量由携带信号周期性信息的主导谐波以及携带不同频谱子带间能量相对分布信息的倒谱系数组成。这种参数化方法能够可靠地表示目标害虫的声发射以及来自环境的干扰。我们通过两个具体案例说明了我们方法的实际意义:1)棕榈种植园的一种毁灭性害虫,即红棕象甲(Rhynchophorus ferrugineus Olivier);2)一种攻击仓储大米(Oryza sativa L.)的害虫,即米象(Sitophilus oryzae (L.))(两者均属于鞘翅目:象甲科,Dryophorinae亚科)。这些害虫在世界许多国家都有分布,并造成了重大经济损失。所提出的方法在实际田间试验中取得了检测结果,在红棕象甲的实地录音中达到了99.1%的准确率,米象的准确率为100%。