Suppr超能文献

基于 CNN 的光纤分布式声学传感在棕榈象甲早期检测中的应用:现场试验。

CNN-Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment.

机构信息

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6491. doi: 10.3390/s22176491.

Abstract

Red palm weevil (RPW) is a harmful pest that destroys many date, coconut, and oil palm plantations worldwide. It is not difficult to apply curative methods to trees infested with RPW; however, the early detection of RPW remains a major challenge, especially on large farms. In a controlled environment and an outdoor farm, we report on the integration of optical fiber distributed acoustic sensing (DAS) and machine learning (ML) for the early detection of true weevil larvae less than three weeks old. Specifically, temporal and spectral data recorded with the DAS system and processed by applying a 100-800 Hz filter are used to train convolutional neural network (CNN) models, which distinguish between "infested" and "healthy" signals with a classification accuracy of ∼97%. In addition, a strict ML-based classification approach is introduced to improve the false alarm performance metric of the system by ∼20%. In a controlled environment experiment, we find that the highest infestation alarm count of infested and healthy trees to be 1131 and 22, respectively, highlighting our system's ability to distinguish between the infested and healthy trees. On an outdoor farm, in contrast, the acoustic noise produced by wind is a major source of false alarm generation in our system. The best performance of our sensor is obtained when wind speeds are less than 9 mph. In a representative experiment, when wind speeds are less than 9 mph outdoor, the highest infestation alarm count of infested and healthy trees are recorded to be 1622 and 94, respectively.

摘要

红棕榈象鼻虫(RPW)是一种有害的害虫,它会破坏全世界许多枣椰树、椰子树和油棕树种植园。对受到 RPW 侵害的树木应用治疗方法并不难;然而,早期发现 RPW 仍然是一个主要挑战,特别是在大型农场。在受控环境和户外农场中,我们报告了集成光纤分布式声学传感(DAS)和机器学习(ML)用于早期检测不到三周大的真正象鼻虫幼虫。具体来说,使用 DAS 系统记录的时间和光谱数据,并通过应用 100-800 Hz 滤波器进行处理,用于训练卷积神经网络(CNN)模型,该模型可以区分“受感染”和“健康”信号,分类准确率约为 97%。此外,还引入了一种严格的基于 ML 的分类方法,将系统的误报性能指标提高了约 20%。在受控环境实验中,我们发现受感染和健康树木的最高感染警报计数分别为 1131 和 22,这突出了我们系统区分受感染和健康树木的能力。相比之下,在户外农场中,风产生的声噪声是系统产生误报的主要来源。当风速小于 9 英里/小时时,我们的传感器性能最佳。在一个有代表性的实验中,当风速小于 9 英里/小时时,受感染和健康树木的最高感染警报计数分别记录为 1622 和 94。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfdd/9459888/9ceae50a3488/sensors-22-06491-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验