Suppr超能文献

人类计步器是步态对称特异性的。

Human odometer is gait-symmetry specific.

机构信息

Center for the Ecological Study of Perception and Action , U 20, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269-1020, USA.

出版信息

Proc Biol Sci. 2009 Dec 22;276(1677):4309-14. doi: 10.1098/rspb.2009.1134. Epub 2009 Sep 9.

Abstract

In 1709, Berkeley hypothesized of the human that distance is measurable by 'the motion of his body, which is perceivable by touch'. To be sufficiently general and reliable, Berkeley's hypothesis must imply that distance measured by legged locomotion approximates actual distance, with the measure invariant to gait, speed and number of steps. We studied blindfolded human participants in a task in which they travelled by legged locomotion from a fixed starting point A to a variable terminus B, and then reproduced, by legged locomotion from B, the A-B distance. The outbound ('measure') and return ('report') gait could be the same or different, with similar or dissimilar step sizes and step frequencies. In five experiments we manipulated bipedal gait according to the primary versus secondary distinction revealed in symmetry group analyses of locomotion patterns. Berkeley's hypothesis held only when the measure and report gaits were of the same symmetry class, indicating that idiothetic distance measurement is gait-symmetry specific. Results suggest that human odometry (and perhaps animal odometry more generally) entails variables that encompass the limbs in coordination, such as global phase, and not variables at the level of the single limb, such as step length and step number, as traditionally assumed.

摘要

1709 年,伯克利假设人类可以通过“身体的运动,通过触摸可以感知到”来测量距离。为了足够普遍和可靠,伯克利的假设必须意味着腿部运动测量的距离接近实际距离,且测量结果与步态、速度和步数无关。我们研究了蒙住眼睛的人类参与者,他们在一项任务中通过腿部运动从固定起点 A 移动到可变终点 B,然后再通过腿部运动从 B 返回,重现 A-B 的距离。外出(“测量”)和返回(“报告”)的步态可以相同或不同,步幅和步频相似或不同。在五个实验中,我们根据运动模式的对称群分析中揭示的主要与次要区别来操纵双足步态。只有当测量和报告步态属于相同的对称类时,伯克利的假设才成立,这表明本体感觉距离测量是步态对称特异性的。结果表明,人类里程计(也许更普遍的动物里程计)需要包含协调肢体的变量,如全局相位,而不是传统上假设的单个肢体的变量,如步长和步数。

相似文献

1
Human odometer is gait-symmetry specific.
Proc Biol Sci. 2009 Dec 22;276(1677):4309-14. doi: 10.1098/rspb.2009.1134. Epub 2009 Sep 9.
2
Symmetry and order parameter dynamics of the human odometer.
Biol Cybern. 2015 Feb;109(1):63-73. doi: 10.1007/s00422-014-0627-1. Epub 2014 Sep 9.
3
Does the human odometer use an extrinsic or intrinsic metric?
Atten Percept Psychophys. 2014 Jan;76(1):230-46. doi: 10.3758/s13414-013-0549-3.
4
Equivalence of human odometry by walk and run is indifferent to self-selected speed.
J Mot Behav. 2012;44(1):47-52. doi: 10.1080/00222895.2011.642026.
5
Human odometry verifies the symmetry perspective on bipedal gaits.
J Exp Psychol Hum Percept Perform. 2012 Aug;38(4):1014-25. doi: 10.1037/a0027853. Epub 2012 Apr 16.
6
Assessing the relative contribution of vision to odometry via manipulations of gait in an over-ground homing task.
Exp Brain Res. 2021 Apr;239(4):1305-1316. doi: 10.1007/s00221-021-06066-z. Epub 2021 Feb 25.
7
Load affects human odometry for travelled distance but not straight-line distance.
Neurosci Lett. 2009 Sep 22;462(2):140-3. doi: 10.1016/j.neulet.2009.07.001. Epub 2009 Jul 5.
8
Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2618-2627. doi: 10.1109/TBME.2017.2653246.
9
Central pattern generators for bipedal locomotion.
J Math Biol. 2006 Sep;53(3):474-89. doi: 10.1007/s00285-006-0021-2. Epub 2006 Jul 28.
10
Distance estimation in the third dimension in desert ants.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 May;188(4):273-81. doi: 10.1007/s00359-002-0301-2. Epub 2002 Apr 6.

引用本文的文献

1
Novel computational approaches characterizing knee physiotherapy.
J Comput Des Eng. 2014 Jan;1(1):55-66. doi: 10.7315/jcde.2014.006. Epub 2014 Jan 1.
2
Homing tasks performed using variations of crawling gait patterns reveal a role for attention in podokinetic path integration.
Exp Brain Res. 2023 Mar;241(3):825-838. doi: 10.1007/s00221-023-06558-0. Epub 2023 Feb 6.
5
For humans navigating without vision, navigation depends upon the layout of mechanically contacted ground surfaces.
Exp Brain Res. 2020 Apr;238(4):917-930. doi: 10.1007/s00221-020-05767-1. Epub 2020 Mar 14.
6
Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.
Exp Brain Res. 2016 Feb;234(2):463-74. doi: 10.1007/s00221-015-4476-5. Epub 2015 Nov 2.
7
Complex Adaptive Behavior and Dexterous Action.
Nonlinear Dynamics Psychol Life Sci. 2015 Oct;19(4):345-94.
8
9
Challenges for the understanding of the dynamics of social coordination.
Front Neurorobot. 2013 Oct 11;7:18. doi: 10.3389/fnbot.2013.0001. eCollection 2013.
10
Obtaining information by dynamic (effortful) touching.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3123-32. doi: 10.1098/rstb.2011.0159.

本文引用的文献

1
Towards testable neuromechanical control architectures for running.
Adv Exp Med Biol. 2009;629:25-55. doi: 10.1007/978-0-387-77064-2_3.
2
Direct evidence for distance measurement via flexible stride integration in the fiddler crab.
Curr Biol. 2009 Jan 13;19(1):25-9. doi: 10.1016/j.cub.2008.10.069. Epub 2008 Dec 24.
3
Steady and transient coordination structures of walking and running.
Hum Mov Sci. 2009 Jun;28(3):371-86. doi: 10.1016/j.humov.2008.10.001. Epub 2008 Nov 22.
4
5
Central pattern generators for bipedal locomotion.
J Math Biol. 2006 Sep;53(3):474-89. doi: 10.1007/s00285-006-0021-2. Epub 2006 Jul 28.
6
The ant odometer: stepping on stilts and stumps.
Science. 2006 Jun 30;312(5782):1965-7. doi: 10.1126/science.1126912.
7
Path integration in mammals.
Hippocampus. 2004;14(2):180-92. doi: 10.1002/hipo.10173.
8
Idiothetic navigation in humans: estimation of path length.
Exp Brain Res. 2001 Aug;139(3):318-32. doi: 10.1007/s002210100735.
9
Ant odometry in the third dimension.
Nature. 2001 Jun 14;411(6839):795-8. doi: 10.1038/35081069.
10
Transfer-appropriate processing (TAP) and repetition priming.
Mem Cognit. 2000 Oct;28(7):1140-51. doi: 10.3758/bf03211815.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验