Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
Inorg Chem. 2009 Oct 5;48(19):9092-103. doi: 10.1021/ic9005746.
A detailed kinetic study of the protonation and subsequent benzene elimination reactions of a (diimine)Pt(II) diphenyl complex (denoted as (N-N)PtPh(2)) has been undertaken in dichloromethane solution with and without acetonitrile as a cosolvent. Spectroscopic monitoring of the reactions by UV-vis stopped-flow and NMR techniques over the temperature range -80 to +27 degrees C allowed the assessment of the effects of acid concentration, coordinating solvent (MeCN) concentration, temperature, and pressure. Protonation of (N-N)PtPh(2) with HBF(4) x Et(2)O in CH(2)Cl(2)/MeCN occurs with a kinetic preference for protonation at the metal, rather than at a phenyl ligand, and rapidly produces (N-N)PtPh(2)H(NCMe)(+) (DeltaH(double dagger) = 29 +/- 1 kJ mol(-1), DeltaS(double dagger) = -47 +/- 4 J K(-1) mol(-1)). At higher temperatures, (N-N)PtPh(2)H(NCMe)(+) eliminates benzene to furnish (N-N)PtPh(NCMe)(+). This reaction proceeds by rate-limiting MeCN dissociation (DeltaH(double dagger) = 88 +/- 2 kJ mol(-1), DeltaS(double dagger) = +62 +/- 6 J K(-1) mol(-1), DeltaV(double dagger) = +16 +/- 2 cm(3) mol(-1)). Protonation of (N-N)PtPh(2) in dichloromethane in the absence of MeCN cleanly produces the Pt(II) pi-benzene complex (N-N)PtPh(eta(2)-C(6)H(6))(+) at low temperatures. Addition of MeCN to a solution of the pi-benzene complex causes an associative substitution of benzene by acetonitrile, the kinetics of which were monitored by (1)H NMR (DeltaH(double dagger) = 39 +/- 2 kJ mol(-1), DeltaS(double dagger) = -126 +/- 11 J K(-1) mol(-1)). When the stronger triflic acid is employed in dichloromethane/acetonitrile, a second protonation-induced reaction also occurs. Thus, (N-N)PtPh(NCMe)(+) produces (N-N)Pt(NCMe)(2)(2+) and benzene with no detectable intermediates (DeltaH(double dagger) = 69 +/- 1 kJ mol(-1), DeltaS(double dagger) = -43 +/- 3 J K(-1) mol(-1)). The mechanisms for all steps are discussed in view of the accumulated data. Interestingly, the data allow a reinterpretation of a previous report on proton exchange between the phenyl and benzene ligands in (N-N)PtPh(eta(2)-C(6)H(6))(+). It appears that the exchange occurs by a direct sigma-bond metathesis pathway, rather than by the oxidative cleavage/reductive coupling sequence that was proposed.
在二氯甲烷溶液中,研究了(二亚胺)Pt(II)二苯基配合物(表示为(N-N)PtPh(2))的质子化和随后的苯消除反应的详细动力学。通过在-80 至+27 摄氏度的温度范围内使用紫外-可见停流和 NMR 技术对反应进行光谱监测,评估了酸浓度、配位溶剂(MeCN)浓度、温度和压力的影响。在二氯甲烷/MeCN 中,用 HBF(4)x Et(2)O 对(N-N)PtPh(2)进行质子化,质子化优先发生在金属上,而不是在苯基配体上,并迅速生成(N-N)PtPh(2)H(NCMe)(+)(DeltaH(双斜杠)= 29 +/- 1 kJ mol(-1),DeltaS(双斜杠)= -47 +/- 4 J K(-1)mol(-1))。在较高温度下,(N-N)PtPh(2)H(NCMe)(+)消除苯生成(N-N)PtPh(NCMe)(+)。该反应通过限速 MeCN 解离进行(DeltaH(双斜杠)= 88 +/- 2 kJ mol(-1),DeltaS(双斜杠)= +62 +/- 6 J K(-1)mol(-1),DeltaV(双斜杠)= +16 +/- 2 cm(3)mol(-1))。在没有 MeCN 的二氯甲烷中,(N-N)PtPh(2)的质子化在低温下干净地生成 Pt(II)π-苯配合物(N-N)PtPh(eta(2)-C(6)H(6))(+)。向π-苯配合物溶液中添加 MeCN 会导致苯通过乙腈的缔合取代,这通过(1)H NMR 进行监测(DeltaH(双斜杠)= 39 +/- 2 kJ mol(-1),DeltaS(双斜杠)= -126 +/- 11 J K(-1)mol(-1))。当在二氯甲烷/乙腈中使用更强的三氟甲磺酸时,也会发生第二个质子化诱导的反应。因此,(N-N)PtPh(NCMe)(+)生成(N-N)Pt(NCMe)(2)(2+)和苯,没有检测到中间产物(DeltaH(双斜杠)= 69 +/- 1 kJ mol(-1),DeltaS(双斜杠)= -43 +/- 3 J K(-1)mol(-1))。讨论了所有步骤的机制,并考虑了积累的数据。有趣的是,这些数据允许重新解释先前关于(N-N)PtPh(eta(2)-C(6)H(6))(+)中苯基和苯配体之间质子交换的报告。似乎交换是通过直接的 sigma 键复分解途径发生的,而不是之前提出的氧化裂解/还原偶联序列。