Department of Chemistry, University of York, York, YO10 5DD, UK.
CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France.
Angew Chem Int Ed Engl. 2022 Jan 26;61(5):e202111462. doi: 10.1002/anie.202111462. Epub 2021 Nov 26.
In 2007 two of us defined the σ-Complex Assisted Metathesis mechanism (Perutz and Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578-2592), that is, the σ-CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal-element bonds through partner-interchange of σ-bond complexes. The key concept that defines a σ-CAM process is a single transition state for metathesis that is connected by two intermediates that are σ-bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ-bond complexes have been isolated or computed as well-defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ-bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ-CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ-CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ-bond ligands, agostic complexes, sp -carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal-element bonds.
2007 年,我们中的两人定义了 σ-Complex Assisted Metathesis 机制(Perutz 和 Sabo-Etienne,Angew. Chem. Int. Ed. 2007, 46, 2578-2592),即 σ-CAM 概念。这种新的反应机制方法将涉及通过 σ 键配合物的伙伴交换形成各种金属-元素键的复分解反应结合在一起。定义 σ-CAM 过程的关键概念是一个单一的复分解过渡态,通过两个中间体连接,而中间体是 σ 键配合物,同时金属的氧化态在前体、中间体和产物中保持不变。该机制适用于已经分离或计算为明确最小值的 σ 键配合物的情况。与其他几种机制不同,它没有定义过渡态的性质。在这篇综述中,我们强调了 σ 键配合物的特征和动态重排方面的进展,尤其是烷烃和锌烷配合物,但也包括硅烷和硼烷配合物的不同几何形状。我们提出了一系列支持有力实验和/或计算证据的 σ-CAM 机制的催化和计量实例。然后,我们借鉴这些例子来说明 σ-CAM 机制的范围已经扩展到 2007 年未设想的反应类别(额外的 σ 键配体、桥接配合物、sp 碳、表面)。最后,我们对金属-元素键复分解的替代机制进行了批判性比较。