Suppr超能文献

C60聚集体对哺乳动物细胞的比较毒性:四氢呋喃(THF)分解的作用。

Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition.

作者信息

Kovochich Michael, Espinasse Benjamin, Auffan Melanie, Hotze Ernest M, Wessel Lauren, Xia Tian, Nel Andre E, Wiesner Mark R

机构信息

Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.

出版信息

Environ Sci Technol. 2009 Aug 15;43(16):6378-84. doi: 10.1021/es900990d.

Abstract

C60 fullerene is a promising material because of its unique physiochemical properties. However, previous studies have reported that colloidal aggregates of C60 (nC60) produce toxicity in fish and human cell cultures. The preparation method of nC60 raises questions as to whether the observed effects stem from fullerenes or from the organic solvents used during the preparation of the suspensions. In this paper, we set out to elucidate the mechanism by which tetrahydrofuran (THF) treatment to enhance the preparation of nC60 leads to cytotoxicity in a mouse macrophage cell line. Our results demonstrate that THF/nC60 but not fullerol or aqueous nC60 generates cellular toxicity through a pathway that involves increased intracellular flux and mitochondrial perturbation in RAW 264.7 cells. Interestingly, the supernatant of the THF/n60 suspension rather than the colloidal fullerene aggregates mimics the cytotoxic effects due to the presence of gamma-butyrolactone and formic acid. Thus, the role of nC60 in the cellular responses is likely not due to the direct effect of the nC60 material surface on the cells but is related to the conversion of THF into a toxic byproduct during preparation of the suspension.

摘要

C60富勒烯因其独特的物理化学性质而成为一种很有前景的材料。然而,先前的研究报道称,C60的胶体聚集体(nC60)在鱼类和人类细胞培养中会产生毒性。nC60的制备方法引发了这样的疑问:观察到的效应是源于富勒烯本身,还是源于制备悬浮液过程中使用的有机溶剂。在本文中,我们着手阐明用四氢呋喃(THF)处理以增强nC60的制备从而导致小鼠巨噬细胞系细胞毒性的机制。我们的结果表明,THF/nC60而非富勒醇或水性nC60通过一种涉及RAW 264.7细胞内细胞内通量增加和线粒体扰动的途径产生细胞毒性。有趣的是,THF/n60悬浮液的上清液而非胶体富勒烯聚集体模拟了细胞毒性效应,这是由于存在γ-丁内酯和甲酸。因此,nC60在细胞反应中的作用可能不是由于nC60材料表面对细胞的直接作用,而是与在制备悬浮液过程中THF转化为有毒副产物有关。

相似文献

1
Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition.
Environ Sci Technol. 2009 Aug 15;43(16):6378-84. doi: 10.1021/es900990d.
2
Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide.
Environ Sci Technol. 2009 Jan 1;43(1):108-13. doi: 10.1021/es8019066.
5
Comparison of the cytotoxic responses of Escherichia coli (E. coli) AMC 198 to different fullerene suspensions (nC60).
Chemosphere. 2012 Apr;87(4):362-8. doi: 10.1016/j.chemosphere.2011.12.024. Epub 2012 Jan 9.
6
Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow.
Mar Environ Res. 2006 Jul;62 Suppl:S5-9. doi: 10.1016/j.marenvres.2006.04.059. Epub 2006 Apr 22.
8
Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.
Environ Sci Technol. 2006 Dec 1;40(23):7394-401. doi: 10.1021/es0609708.
9
Inactivation of nanocrystalline C60 cytotoxicity by gamma-irradiation.
Biomaterials. 2006 Oct;27(29):5049-58. doi: 10.1016/j.biomaterials.2006.05.047. Epub 2006 Jun 19.
10
Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports.
Curr Opin Biotechnol. 2011 Aug;22(4):533-7. doi: 10.1016/j.copbio.2011.05.511. Epub 2011 Jun 28.

引用本文的文献

3
Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface.
Front Bioeng Biotechnol. 2019 Jan 23;7:4. doi: 10.3389/fbioe.2019.00004. eCollection 2019.
4
Can nanotechnology potentiate photodynamic therapy?
Nanotechnol Rev. 2012 Mar;1(2):111-146. doi: 10.1515/ntrev-2011-0005.
5
Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements.
Environ Sci Technol. 2014 Apr 15;48(8):4226-46. doi: 10.1021/es4052999. Epub 2014 Mar 27.
6
C₆₀ exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats.
Toxicol Sci. 2014 Apr;138(2):365-78. doi: 10.1093/toxsci/kfu008. Epub 2014 Jan 15.
8
Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.
Int J Mol Sci. 2013 Apr 26;14(5):9182-204. doi: 10.3390/ijms14059182.
9
Shining light on nanotechnology to help repair and regeneration.
Biotechnol Adv. 2013 Sep-Oct;31(5):607-31. doi: 10.1016/j.biotechadv.2012.08.003. Epub 2012 Aug 21.
10
Photodynamic activity of viral nanoparticles conjugated with C60.
Chem Commun (Camb). 2012 Sep 18;48(72):9044-6. doi: 10.1039/c2cc34695h. Epub 2012 Aug 2.

本文引用的文献

1
Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide.
Environ Sci Technol. 2009 Jan 1;43(1):108-13. doi: 10.1021/es8019066.
3
In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish.
Carbon N Y. 2007 Aug;45(9):1891-1898. doi: 10.1016/j.carbon.2007.04.021.
4
A rapid GC-MS determination of gamma-hydroxybutyrate in saliva.
J Anal Toxicol. 2008 May;32(4):298-302. doi: 10.1093/jat/32.4.298.
5
Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.
Toxicol Appl Pharmacol. 2008 May 15;229(1):44-55. doi: 10.1016/j.taap.2007.12.030. Epub 2008 Jan 18.
8
Inactivation of nanocrystalline C60 cytotoxicity by gamma-irradiation.
Biomaterials. 2006 Oct;27(29):5049-58. doi: 10.1016/j.biomaterials.2006.05.047. Epub 2006 Jun 19.
9
Use of spectroscopic probes for detection of reactive oxygen species.
Clin Chim Acta. 2006 Jun;368(1-2):53-76. doi: 10.1016/j.cca.2005.12.039. Epub 2006 Feb 17.
10
Simultaneous determination of formic acid and formaldehyde in pharmaceutical excipients using headspace GC/MS.
J Pharm Biomed Anal. 2006 Jun 7;41(3):738-43. doi: 10.1016/j.jpba.2005.12.033. Epub 2006 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验