Yuan Quan, McHenry Charles S
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
J Biol Chem. 2009 Nov 13;284(46):31672-9. doi: 10.1074/jbc.M109.050740. Epub 2009 Sep 11.
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
除了由DNA聚合酶III全酶在单链DNA模板上催化的特征明确的进行性复制反应外,该酶在有翼模板上还具有内在的链置换活性。链置换活性与单链DNA模板反应的区别在于,它高度依赖单链DNA结合蛋白,并且在没有tau的情况下,γ复合物无法支持该反应。然而,如果存在γ复合物来加载β(2),则仅包含结构域III-V的截短tau蛋白就足够了。这种截短蛋白足以结合DNA聚合酶(Pol)III的α亚基和chipsi。这让人想起Pol III复制短的单链DNA结合蛋白(SSB)包被模板的最低要求,其中tau仅需作为支架将Pol III和chi保持在同一复合物中(格洛弗,B.,和麦克亨利,C.(1998年)《生物化学杂志》273,23476-23484)。我们提出了一个模型,其中DNA聚合酶III全酶的链置换依赖于Pol III-tau-psi-chi-SSB结合网络,其中SSB与被置换链结合,稳定Pol III-模板相互作用。相同的相互作用网络可能对于稳定前导链聚合酶与真实复制叉的相互作用也很重要。链置换反应的特异性常数(k(cat)/K(m))比在单链模板上的反应低约300倍,反应速率较慢(150个核苷酸/秒),且只有中等的持续性(约300个核苷酸)。PriA是在崩溃或组装错误的复制叉上重新启动复制的起始因子,即使添加到正在进行的反应中,也会阻断链置换反应。