Suppr超能文献

人线粒体 DNA 聚合酶和 SSB 的协调活动引发链置换 DNA 合成的机制。

Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB.

机构信息

Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.

Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.

出版信息

Nucleic Acids Res. 2023 Feb 28;51(4):1750-1765. doi: 10.1093/nar/gkad037.

Abstract

Many replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs. We show that Polγ exhibits a robust DNA unwinding mechanism, which entails lowering the energy barrier for unwinding of the first base pair of the DNA fork junction, by ∼55%. However, the polymerase cannot prevent the reannealing of the parental strands efficiently, which limits by ∼30-fold its strand displacement activity. We demonstrate that SSBs stimulate the Polγ strand displacement activity through several mechanisms. SSB binding energy to ssDNA additionally increases the destabilization energy at the DNA junction, by ∼25%. Furthermore, SSB interactions with the displaced ssDNA reduce the DNA fork reannealing pressure on Polγ, in turn promoting the productive polymerization state by ∼3-fold. These stimulatory effects are enhanced by species-specific functional interactions and have significant implications in the replication of the human mitochondrial DNA.

摘要

许多复制 DNA 聚合酶将 DNA 复制和链解旋活动结合起来,以进行链置换 DNA 合成,这是 DNA 代谢的关键能力。链置换通过伴侣蛋白(如单链 DNA(ssDNA)结合蛋白(SSBs))进行紧密调节,但机制尚不清楚。在这里,我们使用单分子光学镊子和生化分析来阐明人类线粒体 DNA 聚合酶 Polγ 的链置换 DNA 合成的分子机制,以及其与同源和非同源 SSBs 的调节。我们表明,Polγ 表现出强大的 DNA 解旋机制,这需要降低 DNA 叉结处第一个碱基对的解旋能垒约 55%。然而,聚合酶不能有效地阻止亲本链的重新退火,这将其链置换活性限制了约 30 倍。我们证明 SSB 通过多种机制刺激 Polγ 的链置换活性。SSB 与 ssDNA 的结合能额外增加 DNA 连接点的不稳定性能量,约增加 25%。此外,SSB 与置换的 ssDNA 的相互作用降低了 DNA 叉重新退火对 Polγ 的压力,从而通过约 3 倍促进有生产力的聚合状态。这些刺激作用通过种特异性功能相互作用得到增强,对人类线粒体 DNA 的复制具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40a4/9976888/5c9eb0064404/gkad037fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验