Suppr超能文献

Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices.

作者信息

Hestrin S, Sah P, Nicoll R A

机构信息

Department of Physiology, University of California, San Francisco 94143.

出版信息

Neuron. 1990 Sep;5(3):247-53. doi: 10.1016/0896-6273(90)90162-9.

Abstract

We studied with the whole-cell recording techniques, the mechanisms underlying the time course of the slow N-methyl-D-aspartate (NMDA), and fast non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. The rising phase of the NMDA receptor-mediated component of the EPSC as well as the decaying phase of the NMDA and non-NMDA component were highly temperature-sensitive, suggesting that neither of these processes is determined by free diffusion of transmitter. Moreover, glutamate uptake blockers enhanced the responses to exogenously applied glutamate, but had no effect on the decay of either the NMDA or non-NMDA components of the EPSCs. On the other hand, open channel blockers known to modify NMDA channel kinetics reduced the EPSC decay time. Thus, the present results support a model in which the rise time and decay of the NMDA component are determined primarily by slow channel kinetics and the decay of the non-NMDA component is due either to channel kinetics or to desensitization.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验