Suppr超能文献

估计生存数据的单倍型效应。

Estimating haplotype effects for survival data.

作者信息

Scheike Thomas H, Martinussen Torben, Silver Jeremy D

机构信息

Department of Biostatistics, University of Copenhagen, Copenhagen K, Denmark.

出版信息

Biometrics. 2010 Sep;66(3):705-15. doi: 10.1111/j.1541-0420.2009.01329.x.

Abstract

Genetic association studies often investigate the effect of haplotypes on an outcome of interest. Haplotypes are not observed directly, and this complicates the inclusion of such effects in survival models. We describe a new estimating equations approach for Cox's regression model to assess haplotype effects for survival data. These estimating equations are simple to implement and avoid the use of the EM algorithm, which may be slow in the context of the semiparametric Cox model with incomplete covariate information. These estimating equations also lead to easily computable, direct estimators of standard errors, and thus overcome some of the difficulty in obtaining variance estimators based on the EM algorithm in this setting. We also develop an easily implemented goodness-of-fit procedure for Cox's regression model including haplotype effects. Finally, we apply the procedures presented in this article to investigate possible haplotype effects of the PAF-receptor on cardiovascular events in patients with coronary artery disease, and compare our results to those based on the EM algorithm.

摘要

基因关联研究常常探究单倍型对感兴趣结局的影响。单倍型无法直接观测到,这使得在生存模型中纳入此类效应变得复杂。我们描述了一种用于Cox回归模型的新估计方程方法,以评估生存数据的单倍型效应。这些估计方程易于实施,且避免了使用EM算法,在协变量信息不完整的半参数Cox模型背景下,EM算法可能会很缓慢。这些估计方程还能得出易于计算的标准误差直接估计量,从而克服了在此情形下基于EM算法获取方差估计量的一些困难。我们还为包含单倍型效应的Cox回归模型开发了一种易于实施的拟合优度检验程序。最后,我们应用本文提出的程序来探究PAF受体对冠心病患者心血管事件可能存在的单倍型效应,并将我们的结果与基于EM算法的结果进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验