Lipsitz S R, Ibrahim J G
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.
Biometrics. 1998 Sep;54(3):1002-13.
Incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. When a full likelihood is specified, a useful technique for obtaining parameter estimates is the EM algorithm. We propose a set of estimating equations to estimate the parameters of Cox's proportional hazards model when some covariate values are missing. These estimating equations can be solved by an algorithm similar to the EM algorithm. Because of the computational burden of finding a solution to these estimating equations, we propose obtaining parameter estimates via Monte Carlo methods. Asymptotic variances of the parameter estimates are also derived. We present a clinical trials example with three covariates, two of which have some missing values.
在许多以生存时间为结局的研究中,协变量数据不完整是很常见的情况。当指定了完整的似然函数时,一种获取参数估计值的有用技术是期望最大化(EM)算法。当一些协变量值缺失时,我们提出了一组估计方程来估计Cox比例风险模型的参数。这些估计方程可以通过一种类似于EM算法的算法来求解。由于求解这些估计方程的计算负担,我们建议通过蒙特卡罗方法来获取参数估计值。还推导了参数估计值的渐近方差。我们给出了一个有三个协变量的临床试验示例,其中两个协变量有一些缺失值。