Suppr超能文献

Cox模型中具有不完全分类协变量的估计方程。

Estimating equations with incomplete categorical covariates in the Cox model.

作者信息

Lipsitz S R, Ibrahim J G

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

Biometrics. 1998 Sep;54(3):1002-13.

PMID:9750248
Abstract

Incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. When a full likelihood is specified, a useful technique for obtaining parameter estimates is the EM algorithm. We propose a set of estimating equations to estimate the parameters of Cox's proportional hazards model when some covariate values are missing. These estimating equations can be solved by an algorithm similar to the EM algorithm. Because of the computational burden of finding a solution to these estimating equations, we propose obtaining parameter estimates via Monte Carlo methods. Asymptotic variances of the parameter estimates are also derived. We present a clinical trials example with three covariates, two of which have some missing values.

摘要

在许多以生存时间为结局的研究中,协变量数据不完整是很常见的情况。当指定了完整的似然函数时,一种获取参数估计值的有用技术是期望最大化(EM)算法。当一些协变量值缺失时,我们提出了一组估计方程来估计Cox比例风险模型的参数。这些估计方程可以通过一种类似于EM算法的算法来求解。由于求解这些估计方程的计算负担,我们建议通过蒙特卡罗方法来获取参数估计值。还推导了参数估计值的渐近方差。我们给出了一个有三个协变量的临床试验示例,其中两个协变量有一些缺失值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验