Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
Parasitology. 2010 Mar;137(3):395-410. doi: 10.1017/S0031182009990904. Epub 2009 Sep 21.
The adult cestode, Hymenolepis diminuta, is essentially anaerobic energetically. Carbohydrate dissimilation results in acetate, lactate and succinate accumulation with succinate being the major end product. Succinate accumulation results from the anaerobic, mitochondrial, 'malic' enzyme-dependent utilization of malate coupled to ATP generation via the electron transport-linked fumarate reductase. A lesser peroxide-forming oxidase is apparent, however, fumarate reduction to succinate predominates even in air. The H. diminuta matrix-localized 'malic' enzyme is NADP-specific whereas the inner membrane (IM)-associated electron transport system prefers NADH. This dilemma is circumvented by the mitochondrial, IM-associated NADPH-->NAD+ transhydrogenase in catalyzing hydride ion transfer from NADPH to NAD+ on the IM matrix surface. Hydride transfer is reversible and phospholipid-dependent. NADP+ reduction occurs as a non energy-linked and energy-linked reaction with the latter requiring electron transport NADH utilization or ATP hydrolysis. With NAD+ reduction, the cestode transhydrogenase also engages in concomitant proton translocation from the mitochondrial matrix to the intermembrane space and supports net ATP generation. Thus, the cestode NADPH-->NAD+ system can serve not only as a metabolic connector, but an additional anaerobic phosphorylation site. Although its function(s) is unknown, a separate IM-associated NADH--> NAD+ transhydrogenation, catalyzed by the lipoamide and NADH dehydrogenases, is noted.
成虫绦虫,微小膜壳绦虫,在能量上基本上是无氧的。碳水化合物的异化导致乙酸盐、乳酸盐和琥珀酸盐的积累,其中琥珀酸盐是主要的终产物。琥珀酸盐的积累是由于厌氧的、线粒体的、依赖于“苹果酸”酶的苹果酸利用,与通过电子传递连接的延胡索酸还原酶一起产生 ATP。然而,显然存在一种较少的过氧化物形成氧化酶,但是即使在空气中,延胡索酸还原为琥珀酸盐也占主导地位。微小膜壳绦虫基质定位的“苹果酸”酶是 NADP 特异性的,而内膜(IM)相关的电子传递系统更喜欢 NADH。线粒体、IM 相关的 NADPH-->NAD+转氢酶通过催化 IM 基质表面上的 NADPH 向 NAD+的氢化物离子转移,从而避免了这种困境。氢化物转移是可逆的和磷脂依赖性的。NADP+还原既可以作为非能量偶联反应,也可以作为能量偶联反应发生,后者需要电子传递 NADH 利用或 ATP 水解。随着 NAD+的还原,绦虫转氢酶也参与从线粒体基质到膜间空间的质子转运,并支持净 ATP 的产生。因此,绦虫 NADPH-->NAD+系统不仅可以作为代谢连接器,还可以作为额外的厌氧磷酸化位点。虽然其功能未知,但注意到了内膜相关的 NADH-->NAD+转氢作用,由脂酰辅酶 A 和 NADH 脱氢酶催化。