Suppr超能文献

微流控,基于珠粒的检测法:理论与实验。

Microfluidic, bead-based assay: Theory and experiments.

机构信息

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 19104, USA.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jan 15;878(2):228-36. doi: 10.1016/j.jchromb.2009.08.050. Epub 2009 Sep 4.

Abstract

Microbeads are frequently used as a solid support for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. However, relatively few studies investigate the binding kinetics on modified bead surfaces in a microfluidics context. In this study, a customized hot embossing technique is used to stamp microwells in a thin plastic substrate where streptavidin-coated agarose beads are selectively placed and subsequently immobilized within a conduit. Biotinylated quantum dots are used as a label to monitor target analyte binding to the bead's surface. Three-dimensional finite element simulations are carried out to model the binding kinetics on the bead's surface. The model accounts for surface exclusion effects resulting from a single quantum dot occluding multiple receptor sites. The theoretical predictions are compared and favorably agree with experimental observations. The theoretical simulations provide a useful tool to predict how varying parameters affect microbead reaction kinetics and sensor performance. This study enhances our understanding of bead-based microfluidic assays and provides a design tool for developers of point-of-care, lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring.

摘要

微珠常用于非均相微流控分析中生物分子(如蛋白质和核酸)的固体支撑物。然而,在微流控环境中,相对较少的研究调查修饰后的珠表面的结合动力学。在这项研究中,使用定制的热压印技术在薄塑料基板上冲压微井,在其中选择性地放置链霉亲和素包被的琼脂糖珠,并随后在导管内固定。生物素化量子点用作标记物,以监测目标分析物与珠表面的结合。进行三维有限元模拟以模拟珠表面上的结合动力学。该模型考虑了由于单个量子点阻塞多个受体位点而导致的表面排斥效应。理论预测与实验观察结果进行了比较,并得到了很好的一致性。理论模拟提供了一种有用的工具,可以预测不同参数如何影响微珠反应动力学和传感器性能。这项研究增强了我们对基于珠的微流控分析的理解,并为即时医疗诊断、食品和水质检测以及环境监测的芯片实验室设备的开发者提供了一种设计工具。

相似文献

1
Microfluidic, bead-based assay: Theory and experiments.
J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jan 15;878(2):228-36. doi: 10.1016/j.jchromb.2009.08.050. Epub 2009 Sep 4.
2
Computational and Experimental Model to Study Immunobead-Based Assays in Microfluidic Mixing Platforms.
Anal Chem. 2022 Feb 1;94(4):2087-2098. doi: 10.1021/acs.analchem.1c04228. Epub 2022 Jan 14.
5
Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
Lab Chip. 2007 May;7(5):588-95. doi: 10.1039/b703808a. Epub 2007 Apr 5.
7
Multiplexed protein analysis using encoded antibody-conjugated microbeads.
J R Soc Interface. 2011 Aug 7;8(61):1104-13. doi: 10.1098/rsif.2010.0594. Epub 2011 Jan 19.
8
Bead mediated separation of microparticles in droplets.
PLoS One. 2017 Mar 10;12(3):e0173479. doi: 10.1371/journal.pone.0173479. eCollection 2017.
9
A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
Biosens Bioelectron. 2010 Jul 15;25(11):2402-7. doi: 10.1016/j.bios.2010.02.032. Epub 2010 Mar 6.
10
Microfluidic bead-based enzymatic primer extension for single-nucleotide discrimination using quantum dots as labels.
Anal Biochem. 2012 Jul 1;426(1):30-9. doi: 10.1016/j.ab.2012.03.030. Epub 2012 Apr 6.

引用本文的文献

1
Polymeric microbead arrays for microfluidic applications.
J Micromech Microeng. 2010 Nov;20(11). doi: 10.1088/0960-1317/20/11/115017. Epub 2010 Oct 15.
2
Numerical optimization of microfluidic biosensor detection time for the SARS-CoV-2 using the Taguchi method.
Indian J Phys Proc Indian Assoc Cultiv Sci (2004). 2023 Mar 11:1-8. doi: 10.1007/s12648-023-02632-z.
3
Taguchi optimization of integrated flow microfluidic biosensor for COVID-19 detection.
Eur Phys J Plus. 2022;137(11):1235. doi: 10.1140/epjp/s13360-022-03457-1. Epub 2022 Nov 12.
4
Grasping and Releasing Agarose micro Beads in Water Drops.
Micromachines (Basel). 2019 Jun 30;10(7):436. doi: 10.3390/mi10070436.
6
Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell.
Biomicrofluidics. 2017 Jan 4;11(1):014101. doi: 10.1063/1.4973247. eCollection 2017 Jan.
8
Detection of autoantibodies using chemiluminescence technologies.
Immunopharmacol Immunotoxicol. 2016;38(1):14-20. doi: 10.3109/08923973.2015.1077461. Epub 2015 Nov 2.
10
Salivary diagnostics using a portable point-of-service platform: a review.
Clin Ther. 2015 Mar 1;37(3):498-504. doi: 10.1016/j.clinthera.2015.02.004. Epub 2015 Feb 27.

本文引用的文献

1
A computational reaction-diffusion model for the analysis of transport-limited kinetics.
Anal Chem. 1999 Dec 1;71(23):5405-12. doi: 10.1021/ac990672b.
2
Finger-actuated, self-contained immunoassay cassettes.
Biomed Microdevices. 2009 Dec;11(6):1175-86. doi: 10.1007/s10544-009-9334-4.
4
5
Magnetic assembly of high-density DNA arrays for genomic analyses.
Anal Chem. 2008 Mar 15;80(6):2149-54. doi: 10.1021/ac702192y. Epub 2008 Feb 9.
6
A spatially addressable bead-based biosensor for simple and rapid DNA detection.
Biosens Bioelectron. 2008 Jan 18;23(6):803-10. doi: 10.1016/j.bios.2007.08.026. Epub 2007 Sep 12.
7
Quantum dot photon statistics measured by three-dimensional particle tracking.
Nano Lett. 2007 Nov;7(11):3535-9. doi: 10.1021/nl0723376. Epub 2007 Oct 19.
8
Analysis of inflammatory biomarkers from tissue biopsies by chip-based immunoaffinity CE.
Electrophoresis. 2007 Aug;28(17):3041-8. doi: 10.1002/elps.200700193.
9
Immobilization of biomolecules on cycloolefin polymer supports.
Anal Chem. 2007 Aug 15;79(16):6264-70. doi: 10.1021/ac062420y. Epub 2007 Jul 11.
10
Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots.
J Agric Food Chem. 2007 May 16;55(10):3778-82. doi: 10.1021/jf0635006. Epub 2007 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验