Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, 19104, USA.
J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jan 15;878(2):228-36. doi: 10.1016/j.jchromb.2009.08.050. Epub 2009 Sep 4.
Microbeads are frequently used as a solid support for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. However, relatively few studies investigate the binding kinetics on modified bead surfaces in a microfluidics context. In this study, a customized hot embossing technique is used to stamp microwells in a thin plastic substrate where streptavidin-coated agarose beads are selectively placed and subsequently immobilized within a conduit. Biotinylated quantum dots are used as a label to monitor target analyte binding to the bead's surface. Three-dimensional finite element simulations are carried out to model the binding kinetics on the bead's surface. The model accounts for surface exclusion effects resulting from a single quantum dot occluding multiple receptor sites. The theoretical predictions are compared and favorably agree with experimental observations. The theoretical simulations provide a useful tool to predict how varying parameters affect microbead reaction kinetics and sensor performance. This study enhances our understanding of bead-based microfluidic assays and provides a design tool for developers of point-of-care, lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring.
微珠常用于非均相微流控分析中生物分子(如蛋白质和核酸)的固体支撑物。然而,在微流控环境中,相对较少的研究调查修饰后的珠表面的结合动力学。在这项研究中,使用定制的热压印技术在薄塑料基板上冲压微井,在其中选择性地放置链霉亲和素包被的琼脂糖珠,并随后在导管内固定。生物素化量子点用作标记物,以监测目标分析物与珠表面的结合。进行三维有限元模拟以模拟珠表面上的结合动力学。该模型考虑了由于单个量子点阻塞多个受体位点而导致的表面排斥效应。理论预测与实验观察结果进行了比较,并得到了很好的一致性。理论模拟提供了一种有用的工具,可以预测不同参数如何影响微珠反应动力学和传感器性能。这项研究增强了我们对基于珠的微流控分析的理解,并为即时医疗诊断、食品和水质检测以及环境监测的芯片实验室设备的开发者提供了一种设计工具。