Suppr超能文献

用于新冠病毒检测的集成流动微流控生物传感器的田口优化法

Taguchi optimization of integrated flow microfluidic biosensor for COVID-19 detection.

作者信息

Kaziz Sameh, Ben Mariem Ibrahim, Echouchene Fraj, Belkhiria Maissa, Belmabrouk Hafedh

机构信息

Quantum and Statistical Physics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Environment Boulevard, 5019 Monastir, Tunisia.

Higher National Engineering School of Tunis, Taha Hussein Montfleury Boulevard, University of Tunis, 1008 Tunis, Tunisia.

出版信息

Eur Phys J Plus. 2022;137(11):1235. doi: 10.1140/epjp/s13360-022-03457-1. Epub 2022 Nov 12.

Abstract

In this research, Taguchi's method was employed to optimize the performance of a microfluidic biosensor with an integrated flow confinement for rapid detection of the SARS-CoV-2. The finite element method was used to solve the physical model which has been first validated by comparison with experimental results. The novelty of this study is the use of the Taguchi approach in the optimization analysis. An orthogonal array of seven critical parameters-Reynolds number (Re), Damköhler number (Da), relative adsorption capacity ( ), equilibrium dissociation constant (K), Schmidt number (Sc), confinement coefficient (α) and dimensionless confinement position (X), with two levels was designed. Analysis of variance (ANOVA) methods are also used to calculate the contribution of each parameter. The optimal combination of these key parameters was Re = 10, Da = 1000, = 0.5,  = 5, Sc = 10,  = 2 and  = 2 to achieve the lowest dimensionless response time (0.11). Among the all-optimization factors, the relative adsorption capacity ( ) has the highest contribution (37%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (7%).

摘要

在本研究中,采用田口方法优化了具有集成流动限制功能的微流控生物传感器的性能,以快速检测新型冠状病毒(SARS-CoV-2)。使用有限元方法求解物理模型,该模型首先通过与实验结果进行比较得到验证。本研究的新颖之处在于在优化分析中使用了田口方法。设计了一个包含七个关键参数的正交阵列,即雷诺数(Re)、达姆科勒数(Da)、相对吸附容量( )、平衡解离常数(K)、施密特数(Sc)、限制系数(α)和无量纲限制位置(X),每个参数有两个水平。还使用方差分析(ANOVA)方法计算每个参数的贡献。这些关键参数的最佳组合为Re = 10、Da = 1000、 = 0.5、 = 5、Sc = 10、 = 2和 = 2,以实现最低的无量纲响应时间(0.11)。在所有优化因素中,相对吸附容量( )对响应时间的缩短贡献最大(37%),而施密特数(Sc)的贡献最小(7%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3441/9660129/80cae5f46bc8/13360_2022_3457_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验